
SLIM: Network Decongestion for Storage Systems

Madalin Mihailescu, Gokul Soundararajan† , Cristiana Amza†

Department of Computer Science
Department of Electrical and Computer Engineering †

University of Toronto

ABSTRACT
We introduce SLIM, a hybrid storage system that uses disks
within data center racks to implement persistent caches for
storage area networks (SANs). SLIM leverages compres-
sion and block overwrites to reduce traffic on data center
oversubscribed network links and to improve performance
for low-cost SANs. We evaluate SLIM using various micro-
benchmarks and industry standard benchmarks. Our results
show that SLIM reduces network storage traffic by 40%-
90% and significantly increases application performance in
bandwidth-constrained environments.

1. INTRODUCTION
Modern data centers consist of multiple racks of physical
servers, interconnected through a networking fabric built us-
ing commodity components. Each physical server hosts mul-
tiple virtual machines (VMs) using storage area networks
(SANs) to reduce operational costs. SANs can be imple-
mented by using either dedicated networking hardware such
as Fibre Channel-based solutions or by sharing the existing
server communication networking fabric with schemes based
on iSCSI/Ethernet. Deployments using Fibre Channel offer
high performance at a high cost. Fibre Channel solutions
require a separate and dedicated infrastructure, adding sig-
nificantly to the infrastructure cost. Therefore, SAN im-
plementations that share the existing networking fabric are
more prevalent in large data centers.

However, current data center networks are built hierarchi-
cally [3], with servers directly connected to a rack-level switch
(RS). Rack-level switches are in turn connected to a layer
of cluster-level switches (CS) through a number of network
links. The rack-to-cluster links are oversubscribed, often by a
factor of 10, thus creating a situation where communication
external to a rack is more expensive than intra-rack commu-
nication. Hence, with higher degrees of server consolidation,
the aggregate traffic from the servers/racks overwhelms the
capacity of the network fabric, thereby limiting scalability.
We thus focus on improving the performance of the more
prevalent low-cost implementations, i.e., those built using
commodity components such as iSCSI/Ethernet.

In this work, we propose SLIM, a hybrid storage solution
that uses the disks located within each rack to offload re-
mote network storage traffic. The key insight that SLIM

This paper appeared at the Second Workshop on I/O Virtualization (WIOV
’10), March 13, 2010, Pittsburgh, PA, USA.

leverages is to (i) use the disks on each server to build a
reliable local storage within each rack, acting as a persistent

data cache, and (ii) use the local storage to implement sev-
eral optimizations, i.e., compression and batching, to reduce
the SAN traffic on the performance critical rack-to-cluster
network links.

Three factors influence the design of SLIM: (i) the abun-
dance of CPU capacity, (ii) the availability of disks within
the rack, and (iii) the capacity of intra-rack network band-
width. First, we notice that, with the prevalence of multi-
core architectures, there is an abundance of computation
power in the physical servers. Second, we notice that disks
on the physical servers are under-utilized, as the VMs access
data hosted on the SAN. Third, in bandwidth constrained
scenarios, there is substantially more bandwidth available
within the rack, compared to the rack-to-cluster links.

With these observations, we build a distributed storage us-
ing the disks local to each rack to offload remote I/O writes
– that is, we create a persistent write-back cache by pool-
ing the under-utilized disks available within the rack. By
caching writes locally, SLIM performs several I/O optimiza-
tions to achieve its main objective of decreasing the amount
of bytes that exit a rack switch and reach the SAN. First,
data is compressed prior to migration. While compression
techniques are offered as options at various levels – appli-
cation, file system, disk image [1, 2], they are performed on
the critical path, rendering them expensive. By storing data
temporarily in the rack cache, SLIM can compress data out-
side the critical path, without impacting performance. Data
is stored compressed in the SAN and decompressed on the
fly on I/O reads. Second, recent work [11] has shown that
I/O overwrites, i.e., I/O writes to the same block, account
for a significant fraction in many workloads. We use this
observation in our system. SLIM controls the time data is
stored in the rack cache, to take advantage of I/O overwrite
patterns and further reduce the amount of bytes transferred
over the network.

We implemented a prototype of SLIM using the Network
Block Device (NBD) protocol. In our preliminary evalua-
tion, we used TPC-C, a write intensive OLTP benchmark,
and TPC-H, a read intensive decision support benchmark.
As TPC-C has a high I/O overwrite ratio, SLIM was able
to reduce network storage traffic by 40%-90%, across vari-
ous migration time interval values. For TPC-H, since SLIM
stores data compressed in the network storage, the amount

of bytes transferred was reduced by 50% on average. As a
secondary benefit, SLIM improved application performance
for oversubscribed networks, and the improvements were
higher as we increased the oversubscription factor. For TPC-
C, SLIM increased application throughput by up to 250%,
while for TPC-H, SLIM decreased latency by up to 42%.

The next section describes our problem setting in more de-
tail. The design of SLIM is presented in Section 3 and the
prototype implementation is discussed in Section 4. Sec-
tion 5 evaluates SLIM using various benchmarks. Related
work is presented in Section 6, while Section 7 concludes the
paper.

2. PROBLEM SETTING
SLIM targets data center architectures with network-based
storage, as shown in Figure 1. In this design, multiple racks
of physical servers (hosts) are interconnected through a net-
working fabric built using commodity components. Each
physical server is shared by multiple virtual machines (VMs)
using storage area networks (SANs) to reduce operational
costs. Block devices hosted in the storage arrays that com-
pose the SANs are accessible from multiple hosts and provide
persistent, reliable storage to virtual machines. A network-
based storage design allows for storage optimizations such
as deduplication to reduce the storage footprint and enables
techniques such as virtual machine migration to be easily
implemented, i.e., by avoiding the costs of transferring data
between different hosts.

SANs can be implemented by using either dedicated net-
working hardware such as Fibre Channel (FC) based solu-
tions or sharing the existing server communication network-
ing fabric using iSCSI/Ethernet. While FC-based SANs of-
fer high performance, these solutions require a separate and
dedicated infrastructure, adding significantly to the infras-
tructure cost. Due to this reason, it is more prevalent to
build low-cost SANs using commodity components such as
iSCSI/Ethernet that share the existing server communica-
tion networking fabric.

Current data center networks are built hierarchically [3],
with servers directly connected to a rack-level switch (RS).
The rack-level switches are in turn connected to a layer of
cluster-level switches (CS) through a number of network
links. The number of rack-to-cluster links is usually a frac-
tion of the total number of servers within a rack. As a result,
communication links external to a rack are oversubscribed by
a factor inversely proportional to the uplinks/servers frac-
tion, with typical oversubscription factors of 10 or 20 – that
is, the aggregate traffic generated within the rack is a fac-
tor of 10 more than the traffic that can be sent through the
rack-to-cluster links. Storage arrays composing the SAN are
directly connected to the cluster-level switches, as shown in
Figure 1. As a consequence, with higher degrees of server
consolidation, the aggregate traffic from the servers/racks
overwhelms the capacity of the network fabric, thereby lim-
iting scalability.

In this paper, we focus on improving the performance of
the prevalent low-cost SAN implementations. Our main ob-
jective is to decrease the amount of bytes that exit a rack
switch and reach the network storage system. We want to

Compute Racks

VM
VM
VM
VM

VMM

Rack Switch

Host

Rack Switch

Host

Cluster Switch

devX

Storage Rack

devX

Figure 1: Data center architecture using network-
based storage. We show the typical data center design using
racks of compute servers and storage servers. The data from
the compute servers pass through the cluster switch to reach
the storage rack. These rack-to-cluster links are oversubscribed

leading to a bottleneck with higher server consolidation.

HostHost network storage

VMM devX

devX

SLIM

node
VM

sdb1

ra
c
k
 c

a
c
h

e

1

2

3

1

Figure 2: SLIM design. A client VM is given access to
a network block device managed by SLIM. Data is replicated
across 3 SLIM nodes in the rack. The local SLIM node labeled
1 is the device primary node. The SLIM nodes 2 and 3 are the
device secondary nodes.

meet this goal while providing a similar level of data dura-
bility and reliability.

3. DESIGN
In this section, we present the design of SLIM. SLIM pools
commodity drives located in rack servers to form a per-rack
persistent cache for network storage block devices, as shown
in Figure 2. All I/O operations to network block devices
are intercepted by SLIM. I/O writes are logged to the rack
cache and subsequently migrated to network storage. SLIM
leverages the time window between storing data in the rack
cache and migration to apply compression (outside the crit-
ical path), and to benefit from I/O overwrite patterns. On
the server side, data is stored in its compressed form. I/O
reads are served from both the network storage and rack
cache, i.e., the I/O reads are directed to the most recent
copy. The compressed data is de-compressed on the fly be-
fore returning the data back to the storage client. For higher
reliability, SLIM uses N-way replication across nodes in the
rack cache.

3.1 I/O Path

Handling I/O Writes: The I/Os issued by storage clients,
e.g., block-level client driver in the virtual machine, are in-
tercepted by SLIM and redirected to the rack cache. The
clients are notified of an I/O completion as soon as data is
stored in the rack cache. This allows the writes to take full

advantage of the intra-rack bandwidth. As the notification
is sent after the data is written to the rack cache, the written
data is also kept durable. Then, outside the critical path,
SLIM applies a number of optimizations to the data in order
to reduce the bytes sent to the network storage.

SLIM performs two optimizations. First, SLIM compresses
the written data. Specifically, each write request is divided
into fixed 4K blocks, compressed at a per-block granularity,
and stored in its compressed form at the network storage
server. Second, SLIM maintains the data in the rack for a
time period to take advantage of overwrites. In more detail,
SLIM controls the time data is stored in the rack cache be-
fore it is migrated back to the network storage server. By
increasing the migration interval, SLIM is able to capture
overwrites thus reducing the amount of data migrated back
to the storage server. As an example, consider the following
request stream: write(0, 8192), write(0, 4096) where
the written data has a compressibility ratio of 0.5. Without
SLIM, the number of bytes sent to the network storage is
12228. However, by redirecting requests to the rack cache,
SLIM transfers only 4096 bytes, saving 4096 from overwrites
and 4096 from compression.

Handling I/O Reads: SLIM satisfies a read request by
fetching data from the network storage and, if necessary,
combining it with data stored locally in the rack cache, de-
pending on where the recent copy of data is stored. Specifi-
cally, each I/O read request is split into 4K blocks and each
block is then filled with data from the network storage or
rack cache. Blocks read from network storage are decom-
pressed on the fly; decompression is usually much faster than
compression therefore performing it on the critical path does
not impact application performance significantly. Extending
the previous example, assume a subsequent read request,
read(0, 16384). SLIM will read the first 8192 bytes from
the rack cache, since the latest version of those 8192 bytes
resides in the rack cache. SLIM will then fetch the last 8192
bytes from the network storage. Given a compressibility ra-
tio of 0.5, 4096 bytes will be transferred from the network
storage, saving 12228.

Data Migration: Data is migrated from the rack cache
to network storage at various time intervals, depending on
client I/O patterns. For instance, if a client application has
a low percentage of I/O overwrites, then delaying the migra-
tion process may not provide savings. In this case, data is
compressed and migrated immediately. On the other hand,
for applications with high I/O overwrite ratios, a large mi-
gration time interval allows for significant savings thereby
reducing the amount of data transferred back to the ‘stor-
age server.

3.2 Replication
SLIM uses N-way replication to deal with failures. There is
a SLIM node running on each rack server managing the local
drives as log-structured filesystems. I/O writes are logged
to one of the local drives and replicated to N-1 other SLIM
nodes within the rack. The SLIM node collocated on the
same server with the client VM is the device primary node.
The N-1 nodes part of the device replication group are the
device secondary nodes. SLIM nodes in charge of a device
form a device replication group. SLIM associates a device

version number with every I/O write. Upon data migration,
the device primary node updates a device checkpoint num-
ber as the highest device version number currently present
in the network storage. All device secondary nodes are kept
up to date with the latest device checkpoint number. SLIM
uses the two numbers to recover from node failures, as de-
tailed in the following section.

3.3 Failure Handling
By adding a level of indirection, e.g., a rack cache, SLIM
introduces an additional point of failure. We classify failures
as server failures, i.e., where an individual server crashes,
and rack failures, i.e., where a rack switch or power failure
can fail the entire rack. We describe how SLIM can handle
each of these cases next.

Server failures: In case of a server failure, SLIM differenti-
ates among network block devices that had the failed server
as primary and devices for which the server was a secondary.
For the former, SLIM migrates the changes from the latest
device checkpoint up to the current device version to the net-
work storage. For each device having the failed server as pri-
mary, one of the secondary nodes takes control of migrating
the data remotely. For the latter, SLIM picks another node
in the rack to replace the failed secondary. Data changes
from the latest checkpoint are replicated to the new node
by the primary. Note that, on a server failure, hosted client
VMs are lost as well. If a user starts another VM to replace
the crashed one, with the same network block devices, there
could be a period of device unavailability, until the data
migration process for the respective devices completes. This
can be dealt with by placing the new VM onto the same rack
as the crashed server, or by temporarily adding the previous
device SLIM nodes as part of the device replication group.

Rack failures: As SLIM’s goal is to reduce the traffic leav-
ing the rack, the current SLIM design does not replicate data
across multiple racks. This design decision makes SLIM sus-
ceptible to rack switch failures and rack power failures. Any
failure of these components can lead to periods of unavail-
ability of data that has not been migrated back to the SAN.
We believe that the unavailability period is small and can be
further minimized by adding some redundancy. Specifically,
we believe that multiple rack switches and UPS units can
be added at a minimal cost.

4. PROTOTYPE IMPLEMENTATION
We built a prototype of SLIM using the Network Block De-
vice (NBD) protocol. NBD is a standard storage access pro-
tocol similar to iSCSI, supported by Linux. It provides a
method to communicate with a storage server over the net-
work. The client VM imports block devices from an NBD
server. These block devices store application data. In the
base case, the NBD server is the remote storage server. With
SLIM, we implemented a proxy layer that sits between the
client VM and the remote NBD server. The client now im-
ports network block devices from SLIM, which in turn, be-
comes a client for the remote NBD server.

Our approach does not require any changes to the NBD
client nor the remote NBD server. We store data in a log-
structured file system both in the local and the remote net-
work storage. On a write to a block, SLIM redirects the I/O

to the tail of the local storage log and records its new loca-
tion in an internal in-memory map. The local storage runs a
thread that migrates data from local to remote storage at a
configurable interval and updates the remote log in-memory
map. All data written in the previous interval is migrated
periodically. The contents of the in-memory maps are pe-
riodically flushed to the local/remote storage for recovery
purposes. The migration operation consists of reading the
most recent version of the data from the local log, compress-
ing (using zlib), and shipping the compressed data to the
remote log.

5. PRELIMINARY EVALUATION
In this section, we evaluate SLIM against a base implemen-
tation that relies solely on network storage. We start by
describing the methodology and benchmarks, then present
our experimental results. In our experiments, we vary the
data migration interval and the network oversubscription
factor. We report savings in network traffic for write inten-
sive and read intensive workloads, and the impact SLIM has
on application performance.

5.1 Methodology
Our evaluation infrastructure consists of: (1) a remote stor-
age server running NBD to provide block devices over the
network, (2) a client running the benchmarks, and (3) two
SLIM nodes, one co-located with the client VM, acting as
a primary, and one located on a different server, acting as
a secondary. We run these components in virtual machines
on top of the Xen hypervisor on different physical servers.
To evaluate SLIM with various oversubscription factors, we
control the network bandwidth to the remote storage server
using the Linux tool tc.

The physical servers are Dell PowerEdge SC1450 and we de-
ployed Xen 3.2.1 as virtualization technology. We use four
workloads: two micro-benchmarks based on the Linux+XEN
source code, and two industry-standard benchmarks, TPC-
C and TPC-H. We divide the benchmarks into write inten-
sive and read intensive. Both TPC-C and TPC-H are backed
by a MySQL/InnoDB (version 5.0.24) database engine. The
client virtual machine, running the benchmarks, is config-
ured with 2 virtual CPUs and 1.5 GB of RAM. The virtual
machines running the SLIM nodes are configured with 1 vir-
tual CPU and 512 MB of RAM. The remote storage virtual
machine has 1 virtual CPU and 1.5 GB of RAM. All CPUs
run at 3 GHz. For MySQL, we use the Linux O_DIRECT mode
to bypass OS-level buffer caching. The current SLIM pro-
totype does not incorporate memory resources into the rack
cache. This means that, upon migration, SLIM reads data
directly from the local drive. Also, for read intensive work-
loads, SLIM does not cache data read from network storage.
Thus, the reported results are worst case and we expect
SLIM to perform significantly better if the local memory
was used for optimization.

5.2 Benchmarks
LINUX+XEN: We create two micro-benchmarks based on
the source code tree for Linux and Xen. First, as a write-
intensive task, we use rsync to copy the entire source code
to the remote storage. Second, we perform a recursive grep

on the source code, i.e., a read-intensive operation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

base slim0

G
B

Compression Savings
Actual Bytes Transferred

Figure 3: rsync XEN/LINUX micro-benchmark.
Network storage traffic with base and slim0 – SLIM achieves
savings of over 50% due to compression.

TPC-C: The TPC-C benchmark simulates a wholesale parts
supplier that operates using a number of warehouse and sales
districts. The workload involves transactions from a number
of terminal operators centered around an order entry envi-
ronment. TPC-C is a write intensive benchmark with only
4% of the workload mix being read-only. We scale TPC-C
by using 64 warehouses, which gives a database footprint of
6GB.

TPC-H: The TPC-H benchmark illustrates decision sup-
port systems that examine large volumes of data, execute
queries with a high degree of complexity, and give answers
to critical business questions. TPC-H is a read intensive
benchmark. It contains a set of 22 queries (Q1 to Q22) that
are fired to the database engine. We scale TPC-H by a factor
of 1, resulting in a database footprint of 4GB. For our pre-
liminary evaluation we selected four I/O intensive queries:
Q3, Q8, Q12, Q15.

5.3 Results
In our experiments, first, we measure the reduction in net-
work traffic that SLIM achieves across different migration
time intervals. Second, we evaluate the impact SLIM has on
application performance with various network oversubscrip-
tion factors.

We compare SLIM against a base system which communi-
cates directly to the SAN. For SLIM, we vary the data mi-
gration time interval. We use slimx to term a SLIM solution
with x seconds as migration interval. For instance, slim240
represents SLIM with data migration performed every 240
seconds. We also evaluate against an ideal case, where data
is migrated when load is low. We term this scheme sliminf.

To quantify network traffic savings, we measure the actual
bytes transferred to network storage, the bytes saved due to
compression and the bytes saved due to I/O overwrites.

5.3.1 Write Intensive Applications
rsync: First, we evaluate SLIM using a common write inten-
sive task: remote copy. We use rsync to copy the Linux+XEN
source code tree from the client VM root filesystem to the
network storage. Figure 3 shows the network storage traffic
breakdown over one run with the base and slim0 schemes.

 0

 10

 20

 30

 40

 50

 60

 70

1x 5x 10x 20x 40x

S
ec

o
n

d
s

(x
1

0
)

Oversubscription Factor

base

slim0

sliminf

Figure 4: rsync XEN/LINUX micro-benchmark.
Duration of rsync on source code tree – SLIM increases per-
formance significantly with high oversubscription factors.

 0

 5

 10

 15

 20

 25

 30

base slim0 slim240 sliminf

M
B

 /
 T

ra
n

sa
c
ti

o
n

s
(x

1
0

)

Overwrites Savings
Compression Savings
Actual Bytes Transferred

Figure 5: TPC-C benchmark. Network storage traffic
with 20x oversubscription factor – SLIM reduces the amount
of bytes transferred by leveraging compression and overwrites.
Higher data migration intervals considerably reduce network
storage traffic.

SLIM transfers less than half bytes to the remote storage,
compared to the base solution. All savings come from com-
pression, since the remote copy task has no I/O overwrites.
In Figure 4 we plot the duration of rsync across various
network bandwidth oversubscription factors with 3 schemes:
base, slim0, and sliminf. With low oversubscription fac-
tors - 1x, 5x, slim0 impacts performance. Although SLIM
compresses data outside the critical path, it has to enforce
the migration time interval. When the time interval ex-
pires, data needs to be migrated as soon as possible. SLIM
is forced to slow down the application if migration is slower
than the workload throughput. Note, however, that for our
prototype, the SLIM nodes were configured with 1 CPU.
By increasing the computing power in the rack cache, we
should be able to compress faster and increase migration
performance. With higher oversubscription factors - 10x,
20x, 40x, network becomes the main bottleneck. In these
environments, SLIM increases the task performance signifi-
cantly.

TPC-C: For the second set of experiments with write inten-
sive apps we used TPC-C. We configured MySQL with 1 GB

 0

 10

 20

 30

 40

 50

 60

1x 5x 10x 20x 40x

T
ra

n
sa

ct
io

n
s

p
er

 S
ec

o
n

d

Oversubscription Factor

base

slim0

slim240

sliminf

Figure 6: TPC-C benchmark. Throughput – SLIM has
a minor impact on performance in well-provisioned networks,
while doubling throughput when network is oversubscribed.

buffer pool size and we started 8 client terminals. In Figure 5
we show the network storage traffic breakdown normalized
over the application throughput. TPC-C has a high rate
of I/O overwrites. We benefit from this pattern by increas-
ing the migration time interval. The slim0 scheme trans-
fers 50% less bytes than base, with half of the savings due
to compression and half to overwrites. As we increase the
migration interval, SLIM transfers less data to the remote
network storage, with more savings coming from I/O over-
writes. For instance, slim240 transfers 73% less bytes than
the base scheme. Figure 6 plots TPC-C throughput over
various network bandwidth oversubscription factors. There
are a number of trends worth mentioning in this graph.
Notice that as we increase the oversubscription factor, the
throughput for all schemes degrades. However, while in well-
provisioned networks, SLIM slightly impacts performance,
in network constrained settings SLIM improves application
performance significantly. With a 40x oversubscription fac-
tor, slim0 doubles the base throughput, while slim240 al-
most triples it. Also note that, as we increase the migration
interval, SLIM increases the throughput as well. This is ex-
pected, since we transfer less data remotely. Lastly, sliminf
is constant since there is no data migrated during the ex-
periment, so sliminf does not depend on the rack-external
network bandwidth. Also, sliminf gives better performance
than base with 1x factor. This is because sliminf writes
and reads data from two different drives.

5.3.2 Read Intensive Applications
grep: We evaluate SLIM against a common read intensive
task: recursive grep on the Linux+XEN source code tree.
The total size on disk without our scheme is 1.3GB. With
SLIM we reduce it to approximatively 512MB. Let us look
at how decompressing data on the critical path impacts per-
formance. In Figure 7 we plot the duration of the grep task
across various network bandwidth oversubscription factors.
When bandwidth is not an issue - 1x, 5x factors, our ap-
proach decreases performance. This is because we decom-
press data on the critical path. Also, as previously men-
tioned, our local storage has a minimal configuration, run-
ning with a single CPU. This can be improved by putting
more computing power into the local rack cache. Thus, we

 0

 10

 20

 30

 40

 50

1x 5x 10x 20x 40x

S
ec

o
n

d
s

(x
1

0
)

Oversubscription Factor

base

slim0

Figure 7: grep XEN/LINUX micro-benchmark. Du-
ration of recursive grep on source code tree – SLIM impacts
performance in unconstrained networks, but improves it in con-
strained settings.

 0

 2

 4

 6

 8

 10

 12

b
a
se

sl
im

0

b
a
se

sl
im

0

b
a
se

sl
im

0

b
a
se

sl
im

0

G
B

Q3 Q8

Q12

Q15

Compression Savings
Actual Bytes Transferred

Figure 8: TPC-H benchmark. Network storage traffic
per query – SLIM transfers 50% less bytes due to compression.

 0

 5

 10

 15

 20

1x 5x 10x 20x 40x

S
ec

o
n

d
s

(x
1

0
0

)

Oversubscription Factor

base

slim0

Figure 9: TPC-H benchmark. Duration of I/O intensive
queries; average for the four queries used – SLIM performs
consistently better.

can trade expensive I/O for cheap CPU. Note that, as band-
width gets more oversubscribed - 10x, 20x, 40x, network be-
comes the bottleneck. Decompression on the critical path is
no longer a problem.

TPC-H: For our last set of experiments we used TPC-H,

a read-intensive workload. We selected four I/O intensive
queries. We configured MySQL with 256 MB buffer pool
size. TPC-H has a compressibility ratio of around 0.5. In
Figure 8, we show the network storage bytes transferred with
base and slim0. SLIM generates 50% less traffic for each
query due to compression savings. Figure 9 plots the aver-
age latency for all queries over different network constraints.
With high oversubscription factors - 20x, 40x, SLIM de-
creases query latency by up to 40%. In unconstrained net-
works, SLIM also improves performance, although by a lower
percentage. Most of the queries generate a lot of traffic, but
they are disk bound rather than network bound. Thus, even
with one CPU for decompression, SLIM is able to sustain
the workload.

6. RELATED WORK
Our scheme is similar to work in the area of optimizing data
transfers for network file systems over wide area networks
[7, 9]. These systems use techniques such as content hash-
ing, compression or deferred writes to save bandwidth on
WAN links. With SLIM, we apply similar concepts to the
problem of reducing costs for SANs. However, unlike WAN-
oriented approaches, which use the client disk drive as a
cache, SLIM incorporates a reliable persistent cache by pool-
ing disks within data center racks.

Compression techniques are implemented at various levels –
that is, at the application, file system, or disk image level [1,
2]. In these approaches, the data is usually compressed
on the critical path, thereby impacting application perfor-
mance. Thus, clients may be reluctant to enable such opti-
mization features. On the other hand, by storing the data
temporarily in the persistent rack cache, SLIM can com-
press data transparently, outside the critical path, without
a significant performance impact.

I/O offloading has been proposed at different levels in the
storage hierarchy. Meyer et al. [8] developed Parallax, a stor-
age system that leverages local server resources to implement
fast snapshotting capabilities for virtual machine disk im-
ages on the client side. SLIM uses local drives to implement
rack-level persistent write back caches for SANs. Narayanan
et al. [10] used I/O offloading to handle transient spikes in
workloads for network-based storage. Unlike our system,
this work is targeting environments where network band-
width is plentiful among all components (servers/storage).
Soundararajan et al. [11] implemented a system that offloads
I/O writes to HDDs to increase the lifetime of SSDs. Simi-
larly, Hu et al. [6] proposed an approach called Disk Caching
Disk (DCD), where a HDD is used as a log to convert small
random writes into large log appends. During idle times,
the cached data is de-staged from the log to the underly-
ing primary disk. We leverage offloading to decongest rack-
external network links to remote storage servers. Our goal
is to minimize the traffic that hits a network storage. SLIM
is applicable in current hierarchical data center networks,
where high-level links are often oversubscribed.

Our work is also related to recent work studying data center
networking architectures. Unlike recent approaches for scal-
ing data center networks, which require significant architec-
tural changes [4, 5], we propose a practical, low-cost solution
for reducing network storage traffic on oversubscribed links.

7. CONCLUSIONS & FUTURE WORK
In this paper, we propose SLIM, a hybrid storage implemen-
tation, which uses disks located within each data center rack
to build persistent write-back caches for network storage
traffic. SLIM decreases traffic on the performance critical
rack-to-cluster network links through the use of compres-
sion and batching. Our evaluation shows that SLIM is able
to reduce network storage traffic by 40%-90%. Moreover, in
bandwidth-constrained settings, SLIM increases application
performance by up to 250% for TPC-C, a write intensive
OLTP benchmark, and decreases latency by up to 42% for
TPC-H, a read intensive decision support benchmark.

As future work, we are looking into improving the current
prototype according to the design and evaluate its scalabil-
ity with a high number of clients in large data centers. We
are interested in making SLIM adaptive to application I/O
patterns and resource utilization levels. The current SLIM
design does not incorporate memory resources. In the fu-
ture, we are considering rack level caches for both I/O reads
and writes, by pooling available memory as well.

8. REFERENCES
[1] http://opensolaris.org/os/community/zfs/.
[2]

http://www.gnome.org/~markmc/qcow-image-format.html.
[3] Barroso, L. A., and Holzle, U. The Datacenter as

a Computer: An Introduction to the Design of
Warehouse-Scale Machines. In Synthesis Lectures on
Computer Architecture no. 6 (2009).

[4] Greenberg, A., Hamilton, J. R., Jain, N.,
Kandula, S., Kim, C., Lahiri, P., Maltz, D. A.,
Patel, P., and Sengupta, S. VL2: A Scalable and
Flexible Data Center Network. In SIGCOMM (2009).

[5] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi,
Y., Tian, C., Zhang, Y., and Lu, S. BCube: A High
Performance, Server-centric Network Architecture for
Modular Data Centers. In SIGCOMM (2009).

[6] Hu, Y., and Yang, Q. DCD- Disk Caching Disk: A
New Approach for Boosting I/O Performance. In
ISCA (1996).

[7] Kistler, J. J., and Satyanarayanan, M.
Disconnected Operation in the Coda File System. In
ACM Transactions on Computer Systems (1992).

[8] Meyer, D. T., Aggarwal, G., Cully, B.,
Lefebvre, G., Feeley, M. J., Hutchinson, N. C.,
and Warfield, A. Parallax: Virtual disks for virtual
machines. In EuroSys (2008).

[9] Muthitacharoen, A., Chen, B., and MaziŔres,
D. A Low-Bandwidth Network File System. In SOSP
(2001).

[10] Narayanan, D., Donnelly, A., Thereska, E.,
Elnikety, S., and Rowstron, A. Everest: Scaling
Down Peak Loads through I/O Off-loading. In OSDI
(2008).

[11] Soundararajan, G., Prabhakaran, V.,
Balakrishnan, M., and Wobber, T. Extending
SSD Lifetimes with Disk-Based Write Caches. In
FAST (2010).

http://opensolaris.org/os/community/zfs/
http://www.gnome.org/~markmc/qcow-image-format.html

	Introduction
	Problem Setting
	Design
	I/O Path
	Replication
	Failure Handling

	Prototype Implementation
	Preliminary Evaluation
	Methodology
	Benchmarks
	Results
	Write Intensive Applications
	Read Intensive Applications

	Related Work
	Conclusions & Future Work
	References

