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Abstract
Data analytics and enterprise applications have very dif-
ferent storage functionality requirements. For this rea-
son, enterprise deployments of data analytics are on a
separate storage silo. This may generate additional costs
and inefficiencies in data management, e.g., whenever
data needs to be archived, copied, or migrated across si-
los. We introduce MixApart, a scalable data processing
framework for shared enterprise storage systems. With
MixApart, a single consolidated storage back-end man-
ages enterprise data and services all types of workloads,
thereby lowering hardware costs and simplifying data
management. In addition, MixApart enables the local
storage performance required by analytics through an in-
tegrated data caching and scheduling solution. Our pre-
liminary evaluation shows that MixApart can be 45%
faster than the traditional ingest-then-compute workflow
used in enterprise IT analytics, while requiring one third
of storage capacity when compared to HDFS.

1 Introduction
Data analytics frameworks, such as MapReduce [5, 9]
and Dryad [12], are utilized by many organizations to
process increasing volumes of information; activities
range from analyzing e-mails, transaction records, to ex-
ecuting clustering algorithms for customer segmentation.
Using such data flow frameworks, data partitions are
loaded from an underlying distributed file system, passed
through a series of operators executed in parallel on the
compute nodes, and the results are written back to the
file system. The file system component [5, 11] is a stan-
dalone storage system by itself; data is stored on local
server disks, with redundancy (e.g., 3-way replication)
to provide data protection.

The benefits provided by data analytics frameworks

are well understood. Yet, it is unclear how to integrate
them with existing enterprise storage systems.

Enterprise storage manages high-value data, i.e.,
emails and transaction records, that need to be secured
from tampering, protected from failures, and archived;
high-value data demand enterprise-level data manage-
ment features. Traditional analytics, however, have been
designed for low-value data, i.e., web logs and click
streams, that can be regenerated on a daily basis; low-
value data do not need enterprise-level data management.
Consequently, file systems built for data analytics lack
many of the data management features essential for the
enterprise environment, e.g., support for standard pro-
tocols, storage efficiency features, and data protection
mechanisms. Being purpose-built, these file systems fail
to take into account the usual data lifecycle.

We classify the data lifecycle into three phases: (i)
data acquisition, (ii) data use, and (iii) data retirement
and study the limitations of the purpose-built file systems
in each phase. First, enterprises cannot migrate their ex-
isting applications to the newer file systems, due to their
use of standard SCSI/NFS protocols, as opposed to the
specialized APIs shipped with the new frameworks. Sec-
ond, the design points of these newer file systems are not
suited for enterprise workloads. Enterprise workloads
have small files, have overwrites, and require strong con-
sistency [8], whereas file systems built for analytics ex-
pect large files, file appends, and provide relaxed consis-
tency [11]. Third, as its value decreases, the data must
be retired from active use, yet it must be accessible to re-
cover from failures as well as to meet regulatory compli-
ance. File systems for analytics [5, 11] utilize data repli-
cation for both performance and data reliability. While
replication helps for active data, data protection tech-
niques such as erasure coding [13] are better suited to
protect inactive data.



Due to these disparities, enterprise IT deploys ana-
lytics for high-value data in a separate storage system
(silo). This creates an environment where an enterprise
silo contains data for user-facing enterprise applications
and an analytics silo contains analytics data, usually a
subset of the total enterprise data. This deployment leads
to a substantial upfront investment as well as complex
workflows to manage data across different file systems.
Enterprise analytics typically works as follows: (i) an ap-
plication records data into the enterprise silo, (ii) an ex-
traction workflow reads the data and ingests the data into
the analytics silo, (iii) an analytics program is executed
and the results of the analytics are written into the analyt-
ics file system, (iv) the results of the analytics are loaded
back into the enterprise silo. As new data arrives, the
entire workflow is repeated.

MixApart replaces the distributed file system compo-
nent in current analytics frameworks with an end-to-end
distributed storage solution, XDFS, composed of:

• a stateless caching layer, built out of local disks, co-
located with compute for data analytics performance,

• a shared storage system for data reliability and data
management, and

• a data scheduler that coordinates data transfers from
shared storage into the disk cache, just in time.

MixApart targets comparable performance to a dedicated
data analytics framework for high value enterprise data,
at similar compute scales, while improving storage effi-
ciency and simplifying data management. By relying on
existing enterprise storage for data management, XDFS
removes the redundancy requirements in current dis-
tributed file systems, thereby lowering hardware costs.
Moreover, the XDFS disk cache stores only relevant data
as requested by analytics, further increasing efficiency.

The decoupled design allows deployment of most pro-
cessing required by data analytics as apart from its data
storage system, within the same data center, or even on
cloud infrastructures; at the same time, a single consoli-
dated storage back-end manages and services data for all
types of workloads.

2 MapReduce Workload Analysis
Data analytics frameworks process data by splitting a
user-submitted job into several tasks that run in paral-
lel. In the input data processing phase, e.g., Map phase,
tasks read data partitions from the underlying distributed
file system, compute the intermediate results by running
the computation specified in the task, and shuffle the out-
put to the next set of operators, e.g., Reduce phase. The
bulk of the data processed is read in this initial phase.

Recent studies [3, 7] of production workloads de-
ployed at Facebook, Microsoft Bing, and Yahoo! make
three key observations: (i) there is high data reuse across
jobs, (ii) the input phases are, on average, CPU-intensive,
and (iii) the I/O demands of jobs are predictable. Based
on the above workload characteristics, we motivate our
MixApart design insights. We then show that, at typical
I/O demands and data reuse rates, MixApart can sustain
large compute clusters, equivalent to those supported by
current dedicated deployments.

2.1 High Data Reuse across Jobs
Production analytics workloads exhibit high data reuse
across jobs with only 11%, 6%, and 7% of jobs from
Facebook, Bing, and Yahoo!, respectively, reading a
file once [3]. Using the job traces collected, Anantha-
narayanan et al. estimate in-memory cache hit rates in the
region of 60% with an optimal cache replacement pol-
icy [3], by allocating 32GB of memory on each machine.

MixApart’s distributed storage employs a cache layer
built from local server drives; this disk cache is two
orders of magnitude larger than an in-memory cache.
Hence, even a simple LRU policy suffices to achieve
near-optimal data reuse. Furthermore, we expect reuse
to increase as computations begin to rely on iterative pro-
cessing – e.g., Mahout [6]. Interconnected jobs, such as
job pipelines, will naturally exhibit data reuse in MixA-
part, as the current job input would be the output of the
previous job. These trends and observations indicate that,
by caching data after the first access, MixApart can sig-
nificantly reduce the number of I/Os issued to shared
storage for subsequent accesses.

2.2 CPU-intensive Input Phases
In addition to high data reuse, operations such as
compression/decompression, data serialization, task
setup/cleanup, and output sort increase the average time
spent on the CPU [2]. Indeed, Zaharia et al. show that the
median map task duration is 19s for Facebook’s work-
loads, and 26s for Yahoo!’s [15], while the typical parti-
tion size is 64MB. Higher processing times indicate that
a task’s effective I/O rate is low, thereby there is ample
time to move data from the shared storage to the dis-
tributed cache.

For instance, a task running for 20s to process a 64 MB
input partition implies a task I/O rate of 25 Mbps. A stor-
age server with a 1 Gbps link sustains 40 such map tasks
concurrently, even when all data is read from shared stor-
age. The distributed cache layer further improves scala-
bility. For example, with a 70% cache hit rate and a task
I/O rate of 25 Mbps, more than 130 map tasks can pro-
cess data in parallel from cache and shared storage.



2.3 Predictable I/O Demands
Average high data reuse and low task I/O rates confirm
the feasibility of MixApart. Individual job patterns that
deviate from the average, however, could potentially im-
pact the scalability, by congesting the shared storage
when data reuse is low and aggregate job I/O demands
are high. Hence, coordination is required to smooth out
shared storage traffic and ensure efficient storage band-
width utilization at all times.

Previous studies observe that production workloads
have very predictable task times [3, 7]. In fact, the anal-
ysis of Facebook traces [7] shows that processing jobs
can be classified into 6 bins. In addition, tasks of a job
have similar durations [3]. MixApart uses task durations
to derive an effective map task I/O rate, i.e., the rate at
which a task reads data from storage, at job submission
time. Given the available storage bandwidth, MixApart
can use the respective I/O rates to proactively schedule
data transfers from shared storage to its on-disk caches
just in time and in parallel for job tasks. By having a
global view of future job I/O demands, MixApart can
schedule storage traffic intelligently in order to smooth
out traffic to shared storage across all compute jobs.

2.4 Estimating Cluster Sizes Supported
We expand our analysis to estimate the average compute
cluster sizes that can be supported by MixApart based on
the workload characteristics introduced above, i.e., the
typical data reuse across jobs, the computation to I/O ra-
tio, and the storage bandwidth utilization.

Figure 1 plots the cluster size (in number of map tasks)
for various workload characteristics. We vary the data
reuse ratios from 0 to 0.99, task durations from 0.5s to
40s, and vary the storage bandwidth between 1 Gbps and
10 Gbps. The analysis shows that large analytics clusters
can be sustained; for example, with a data reuse rate of
80% and average map task duration of 20s, MixApart can
support 2000 parallel tasks.

3 MixApart Architecture
MixApart uses the disk space available within each com-
pute node in the analytics dedicated cluster as an on-
disk caching tier for scalable and efficient processing of
shared storage enterprise data. Users submit MapReduce
jobs on datasets stored in shared storage; a job is split
into multiple tasks at specific data granularities (e.g.,
64MB) and executed in parallel on the cluster. MixA-
part has two goals: (i) preserve the scalability and per-
formance benefit of compute-data co-location, and (ii)
ensure efficient resource utilization. MixApart addresses
these goals by utilizing two essential components:
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Figure 1: Compute Cluster Sizes. We show the number of par-
allel map tasks sustained by the cache + shared storage architecture
for MapReduce analytics. Labels represent average map task durations
– e.g., 0.5s for I/O intensive tasks. We plot values for cache-storage
bandwidths of (a) 1Gbps, and (b) 10Gbps.

• Data-aware Task Scheduler: a modified task scheduler
that schedules tasks using a scheduling policy (FIFO
or Fair) and the on-disk cache contents,

• Compute-aware Data Scheduler: a module that trans-
fers data from shared storage to caches, as needed by
tasks, using the scheduling policy and task I/O rates.

Figure 2 shows the MixApart architecture, composed
of two layers: a distributed compute layer and a dis-
tributed data storage layer (XDFS), along with the sched-
ulers and metadata managers associated with the two lay-
ers. Job tasks are scheduled onto compute nodes by a
task scheduler. The data scheduler schedules data trans-
fers from shared storage into the cache to be performed
by XDFS data nodes. The two schedulers exchange
scheduling and location information about the tasks and
data they respectively manage. The resulting schedules
optimize data fetch parallelism, overlap computation and
I/O latency, and co-locate computation and data.

Specifically, once a job is submitted to the compute
layer, this layer passes job-level information, such as data
requests, and I/O rates to the data scheduler located in
the XDFS layer. Guided by this compute-layer infor-
mation, the data scheduler schedules requests for data
on behalf of job tasks; data blocks are transferred from
shared storage into the XDFS on-disk cache. The data
scheduler communicates back to the task scheduler data
location information within the on-disk cache. This loca-
tion information is used by our data-aware task scheduler
to choose the appropriate compute node for each task.

3.1 Data-Aware Task Scheduler
The data-aware task scheduler prioritizes the execution
of tasks according to the chosen scheduling policy as
well as the cache contents. The task scheduler allows
tasks to fully utilize the cache, while maintaining the un-
derlying policy. For example, the FIFO policy schedules
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Figure 2: MixApart Architecture.

jobs based on arrival time and a user-defined job priority,
while Fair schedules jobs in increasing order of number
of running tasks [15]. Upon resource availability events
from compute nodes, the task scheduler assigns a task
from the job at the head of the scheduling queue, priori-
tizing tasks with a higher fraction of data already in the
cache, or on their way to the cache.

The task scheduler is work conserving: if tasks on be-
half of jobs currently expected to run do not saturate the
compute capacity due to lack of input data in the cache,
the scheduler selects tasks from lower priority jobs.

3.2 Compute-Aware Data Scheduler
MixApart uses per-job task I/O rates and the knowledge
of the scheduling policy to efficiently transfer data from
shared storage into cache nodes, given the available stor-
age bandwidth. MixApart allows administrators to spec-
ify bounds on bandwidth consumed by analytics work-
loads, such that enterprise applications are not impacted.

The data scheduler mimics the job scheduling logic to
ensure that the next expected job will have its input data
available in the cache. For example, when the FIFO pol-
icy is used at the compute tier, job arrival times and pri-
orities determine the data transfer order. Similarly, with
Fair, transfer requests are sorted in increasing order of
number of per-job not-yet-analyzed cached data blocks
(including blocks under analysis). Transfer requests are
further sorted per-job, by global block demand, i.e., the
number of tasks interested in a data block, across all jobs.

4 Evaluation
We implement a MixApart prototype within Hadoop by
adding the XDFS caching logic and the compute-aware
data scheduler; the task scheduler uses the FIFO policy.
We evaluate MixApart on a 100-core cluster connected
to a NFS server, running on Amazon EC2 [1]; the XDFS
caches access the storage using local mount points. We
compare MixApart to a standalone Hadoop framework.
Experimental Setup: We use 50 EC2 “standard-large”
instances to deploy the compute and the XDFS data
nodes; each instance hosts a pair of compute-data, and

is configured with 2 virtual cores, 7.5 GB RAM, and
850 GB of local ephemeral storage. Each compute node
provides 2 map slots and 1 reduce slot. The compute and
the XDFS metadata managers use one “standard-extra-
large” instance (4 virtual cores, and 15 GB of RAM).
The shared storage is provided by a “cluster-compute-
extra-large” instance configured with 23 GB RAM, 2 In-
tel Xeon X5570 quad-core CPUs, and 10 Gbps network.
We configure the shared storage server to store data on
4 EBS (elastic block storage) volumes assembled in a
RAID-0 setting; the storage is exposed using NFS.

We use local instance storage for the XDFS cache; the
same disks are also used for HDFS. HDFS is configured
with 3-way replication. We limit the NFS server band-
width to 1 Gbps. This setting also mimics a production
environment where enterprise workloads would still be
able to use the remaining 9 Gbps.
Dataset: We use 12 days of Wikipedia statistics1 as the
dataset; the data is 82 GB uncompressed (average file
size 295MB) and 23 GB compressed (85MB). HDFS
uses 246 GB of storage capacity for uncompressed data,
and 69 GB for compressed. MixApart uses 82 GB, and
23 GB for the cache, respectively, when the entire dataset
is analyzed. As expected, MixApart’s storage needs are
one third of HDFS capacity needed. In general, with only
a subset of the total data being actively analyzed, MixA-
part is able to capture the relevant data for analytics in
the cache, further reducing overall storage requirements.
Workloads: We run a simple MapReduce job to aggre-
gate page views for a regular expression; we run the job
on uncompressed and compressed input. Tasks process-
ing uncompressed data are more I/O intensive than when
input is compressed. Namely, for uncompressed, the ef-
fective map task I/O rates are roughly 50 Mbps. For com-
pressed, I/O rates are 20 Mbps (due to higher CPU use).
We denote runs on uncompressed data as I/O-intensive,
and runs on compressed data as CPU-intensive.

4.1 Preliminary Results
Figure 3 shows that: (a) overlapping the computa-
tion with data ingest improves performance, (b) data
reuse allows MixApart to match the performance of
Hadoop+HDFS, and (c) scheduling data transfers using
compute-awareness enables efficient bandwidth use.
Data Ingest: We compare the performance of MixA-
part with no data in the cache (denoted MixApart-

cold) to Hadoop (Hadoop+ingest) – Figure 3(a). With
Hadoop+ingest, data is ingested into HDFS before a job
starts. By overlapping computation and data transfers,
MixApart reduces job durations by approximately 45%.

1http://dumps.wikimedia.org/other/pagecounts-raw
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Figure 3: Analytics on a 100-core cluster with MixApart and Hadoop. We show job durations for a MapReduce job running on a Wikipedia
dataset. The CPU-intensive experiment processes the compressed data; the I/O-intensive processes the uncompressed data. In (a) we run MixApart
with a cold cache (MixApart-cold). In (b), (c) we run MixApart with a warm cache, with the data scheduler logic, and without (MixApart-DS).

Caching and Scheduling: Figures 3(b) and 3(c) show
job durations for various data reuse ratios. Job dura-
tions decrease with higher reuse ratios as a bulk of the
data is fetched from local disks, avoiding the NFS bot-
tleneck. The compute-aware data scheduler improves
performance by scheduling data transfers just-in-time.
Specifically, MixApart with 0.8 data reuse ratio matches
the performance of Hadoop with all data in HDFS.
Feasibility Analysis: Furthermore, the results are con-
sistent with the analysis presented in Section 2. For
I/O-intensive, the NFS server with 1 Gbps of bandwidth
can sustain 20 parallel tasks (map task I/O rates are
50 Mbps). With 0.8 data reuse ratio, 80 parallel tasks
can use local disks and 20 parallel tasks can use the NFS
server to achieve the same performance as Hadoop with
all data in HDFS. For CPU-intensive, lower I/O rates
allow MixApart to match stand-alone Hadoop perfor-
mance starting with only 0.5 data reuse ratio.

5 Related Work
As the MapReduce paradigm becomes widely adopted
within enterprise environments, the drawbacks of a
purpose-built filesystem become glaring. Recent work
has looked at techniques to interface Hadoop with en-
terprise filesystems [4, 14] as well as studied methods
to provide enterprise storage features on top of exist-
ing MapReduce frameworks [10]. Others have stud-
ied the benefits of in-memory caching for MapReduce
workloads [3, 16]. We leverage the insights of Anantha-
narayanan et al. [3] to argue for a disk caching layer. In
general, works that optimize performance for specific job
classes [3, 16] can be layered on top of MixApart, just as
they would be with frameworks such as Hadoop. We en-
able analytics on enterprise filesystems by leveraging a
caching layer for acceleration without any changes to ex-
isting enterprise storage, while others [4, 14] modify en-
terprise filesystems (i.e., PVFS/GPFS) to support analyt-
ics workloads. In this sense, MixApart allows customers
to leverage the infrastructure already deployed without
additional hardware costs or system downtime.

6 Conclusions and Future Work
MixApart enables scale-out of data analytics, while al-
lowing enterprise IT to meet its data management needs.
MixApart achieves these goals by using a cache layer at
the compute nodes and intelligent schedulers to utilize
the shared storage efficiently. MixApart reduces job du-
rations by 45% compared to the traditional ingest-then-
compute method, while using one third of storage ca-
pacity. We are extending MixApart to support analytics
across data centers, thus allowing customers to maintain
the data on-premise and leverage clouds for processing.
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