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ABSTRACT
As modern multi-tier systems are becoming increasingly large and
complex, it becomes more difficult for system analysts to under-
stand the overall behavior of the system, and diagnose performance
problems. To assist analysts inspect performance behavior, we in-
troduce SelfTalk, a novel declarative language that allows analysts
to query and understand the status of a large scale system. SelfTalk
is sufficiently expressive to encode an analyst’s high-level hypothe-
ses about system invariants, normal correlations between system
metrics, or other a priori derived performance models, such as, “I
expect that the throughputs of interconnected system components
are linearly correlated”. Given a hypothesis, Dena, our runtime
support system, instantiates and validates it using actual monitor-
ing data within specific system configurations. We evaluate Self-
Talk/Dena by posing several hypotheses about system behavior and
querying Dena to validate system behavior in a multi-tier dynamic
content server. We find that Dena automatically validates the sys-
tem performance based on the pre-existing hypotheses and helps to
diagnose system misbehavior.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements, Modeling and prediction

General Terms
Verification, Measurement, Performance, Reliability

Keywords
Hypothesis, Performance Models, Management, Expectation

1. INTRODUCTION
As modern multi-tier systems increase in scale and complexity,

and their applications are more sophisticated, performance valida-
tion and diagnosis of these systems become more and more chal-
lenging. Many commercial tools for monitoring and control of
large-scale systems exist; tools such as HP’s Openview and IBM’s
Tivoli products collect and aggregate information from a variety of
sources and present this information graphically to users. However,
the complexity of the information available with such tools exceeds
the human ability to use these diagnosis tools effectively [10].
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In this paper, we study high-level paradigms and advanced tools
for performance analysis, and interactive performance diagnosis of
multi-tier systems. We argue that the system architect, the perfor-
mance analyst, and/or the system administrator have a wealth of in-
formation and expertise about the system, which can be expressed
as performance hypotheses. Performance hypotheses approximate
system performance metrics, as a function of other system metrics,
the system structure and/or system configurations. The system ar-
chitect, or analyst can provide pre-built performance hypotheses, in
the form of statistical correlations, models, invariants, other math-
ematical laws or properties describing normal system behavior, for
distribution to site operators. For example, performance hypothe-
ses can be derived based on a variety of existing automated or
semi-automated performance modelling techniques, such as, au-
tomatic statistical correlations across self-monitored metrics [3, 6,
9], black-box performance model generation by interpolation from
experimental samples [20, 21], analytical system modelling [22],
or gray-box approaches, where high-level semantic knowledge of
the system is used to guide experimental sampling [22]. Regard-
less of the method for building hypotheses, we assume that they
are validated based on monitoring data, and stored in a knowledge
base. System administrators can then check the accuracy of exist-
ing performance hypotheses in the field, or even design hypotheses
specific to their local configurations. The system analyst, or admin-
istrator can also use stored hypotheses to diagnose the behavior of
the system, periodically, with newer monitoring data. For the re-
mainder of the paper, for simplicity, we refer to the various persons
that provide, monitor, and check hypotheses as analysts.

In order to assist analysts with the tasks of expressing, validat-
ing, and refining their hypotheses about the system, as well as di-
agnosing system problems interactively, we introduce a novel val-
idation infrastructure: (i) a new high-level declarative language,
called SelfTalk, for expressing and refining hypotheses about the
system and (ii) new runtime support, called Dena, capable of self-
monitoring system metrics, evolving, and adapting dynamic mod-
els of metric correlations, as well as interacting with its administra-
tor in SelfTalk.

The relationship between metric classes within a hypothesis can
be expressed in SelfTalk as a high-level, human-readable expres-
sion, such as, “linear”, “less than”, “equal to”, or “monotonically
decreasing”, e.g., “I expect that the average query latency mea-
sured at the database system is greater than the average data ac-
cess latency measured at its back-end storage server.” Our lan-
guage can also leverage existing models, or encode generic laws
that govern system behavior, such as Little’s law [8] that corre-
lates throughput and latency values, or the monotonically decreas-
ing property of the miss-ratio curve (MRC) [26] in a system cache.
Each performance hypothesis expressed in SelfTalk contains as qual-
ifiers the contexts where the hypothesis is expected to apply, i.e.,
the set of configurations, or workloads where the pre-computed
models, or metric correlations expressed in the hypothesis hold.

By submitting a SelfTalk query, the analyst can validate, or refine,
the existing hypotheses, or add new ones interactively, as the sys-
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Listing 1: Invariant Hypothesis
1 HYPOTHESIS HYP-LESS-EQ
2 RELATION LESS-EQ(x,y) {
3 "x.name=‘num_cache_miss’ and
4 y.name=‘num_cache_get’ and
5 x.component=y.component"
6 }
7 CONTEXT {}

tem configurations and the application set evolve. For this purpose,
Dena parses each hypothesis, selects the appropriate mathematical
expression that corresponds to the given keywords, and instantiates
the hypothesis into a set of concrete internal expectations, one for
each matching system configuration. Then, Dena evaluates com-
pliance for the set of expectations by fitting the monitoring data
within any given context to the mathematical expression. Dena
enters the hypothesis, matching expectations, contexts, and a con-
fidence score into the knowledge base. In addition, Dena can be
configured to validate hypotheses periodically and generate alarms
if previously derived correlations do not fit current monitoring data.
In case of alarms, Dena pinpoints the hypotheses that became in-
valid, and the components affected, thus giving valuable feedback
to the analyst.

We perform an evaluation of our approach by posing several hy-
potheses to understand normal behavior of the overall system, the
behavior of individual components, and to diagnose misbehavior
in a multi-tier dynamic content server consisting of a Apache/PHP
web server, a MySQL database using virtual volumes hosted on a
virtual storage system called Akash [22] running industry-standard
benchmarks, TPC-W and TPC-C. We find that Dena can quickly
validate system performance to analysts’ hypotheses and can help
in diagnosing faults, or other system misbehavior. In addition, we
use Dena to validate different components, such as the MySQL
cache, the storage system I/O scheduler, and the behavior of multi-
level caches.

The rest of the paper is organized as follows. Section 2 presents
the SelfTalk language and an overview of the overall system. We
expand on the language in Section 3 and the design of Dena in
Section 4. Section 5 describes our prototype and our experimen-
tal setup consisting of a multi-tier system consisting of MySQL
databases using virtual storage on the Akash storage server. Sec-
tion 6 presents results of our experiments showing how Dena al-
lows the analysts to probe and understand the overall behavior and
the per-component behavior in a multi-tier system. Section 7 dis-
cusses related work and Section 8 concludes the paper.

2. ARCHITECTURAL OVERVIEW
We introduce a novel language and runtime support for under-

standing and validating the behavior of a multi-tier dynamic con-
tent server system. Specifically, we design a high-level declara-
tive language, called SelfTalk, which allows an analyst to express
generic hypotheses about normal system behavior, including oper-
ational laws, and relationships between metric classes. The analyst
submits hypotheses in SelfTalk to a runtime system called Dena,
which is in charge of instantiating and validating them, based on
automatic metric monitoring, statistics collection, and correlation
at various points in the multi-tier system. In the following, we de-
scribe our language, the design of Dena, our tool, and how the an-
alyst and the system interact to check compliance to expectations.

2.1 The SelfTalk Language
A hypothesis consists of a relationship on a set of metric classes

and the associated validity context for that relationship. The context
can be a set of configurations, or workload properties that could po-
tentially affect the given relationship. If the relationship is believed
to be an invariant, then its corresponding context is empty. We pro-

Listing 2: Hypothesis with a Context
1 HYPOTHESIS HYP-LINEAR
2 RELATION LINEAR(x,y) {
3 "x.unit=‘1/s’ and y.unit=‘1/s’"
4 }
5 CONTEXT (a) {
6 "a.name=‘cache_size’ and a.value<=‘512’"
7 }

vide some examples of hypotheses written in SelfTalk; these high-
light the simplicity of the language and its ease of use. A simple
invariant that can be checked by the analyst is that the number of
cache misses (num_cache_miss) must be less than or equal to the
number of cache accesses (num_cache_gets), as shown in List-
ing 1. This is a simple hypothesis issued by the analyst trying to
understand the behavior of a cache in a multi-tier system; she does
not have to know the details of the cache such as its replacement
policy and only needs to have high-level understanding. She sim-
ply states that for a given cache, she expects the number of cache
misses to be less than the number of cache accesses. This is an
invariant of the cache – that is, it must hold true for all configura-
tions and workloads. Thus, the analyst can submit the hypothesis
without a context and Dena will check if this relationship is indeed
valid for all configurations.

However, some hypotheses are valid only for particular config-
urations. For example, in a database system, as the rate of queries
processed increases so does the rate of operations within the op-
erating system, i.e., more I/Os per second (assuming not all data
is cached). The analyst can then hypothesize “I expect that the
throughput of all components are linearly correlated” – that is,
throughput related metrics, i.e., those with units 1/s are correlated.
In Listing 2, we show how the above hypothesis is specified in
Dena. It states that the throughput metrics, i.e., those with units
1/s are expected to be linearly correlated in configurations where
the cache _size is less than or equal to 512MB.

The above two examples illustrate the simplicity of the SelfTalk
language. We strive to lower the learning curve for analysts to
express the behavior of a complex multi-tier system. To achieve
this, we provide simple relations (such as the LINEAR and LESS-EQ
shown above) along with the system and pre-built hypotheses for
common three-tier components, e.g., Apache and MySQL. How-
ever, an experienced analyst may define new metrics to monitor,
create new relationships to test, and explore new facets of large
multi-tier systems. We shall explain the various features of the Self-
Talk language in detail in Section 3.

2.2 The Dena Runtime System
In the following, we provide the steps taken by Dena when the

analyst submits a hypothesis to the system.

1. Dena automatically instantiates the hypothesis and generates a
(much larger) set of expectations, by enumerating all possible
metrics within the metric classes and configurations that match
the hypothesis.

2. Dena validates each expectation with experimental data, com-
putes a confidence score per expectation and stores the expec-
tations in a database. The system is now ready for subsequent
analysis.

3. The analyst may submit a wide variety of queries to Dena in-
cluding querying the validity of expectations over components
in a sub-part of the system, confidence intervals, number of ex-
pectations generated, standard deviations, etc.

Details of Query Execution: Given a hypothesis, Dena cre-
ates a list of expectations by iteratively applying the hypothesis for

each metric matching the qualifiers, �Q. Next, it selects a function

that describes the relationship between the metrics, R( �Q). Then,
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it evaluates the validity of each expectation using the monitoring
data. We describe each step in detail next.

First, Dena creates a list of expectations by applying the hypoth-
esis for each set of metrics matching the qualifiers. For a set of

metrics, �M , Dena extracts a subset of metrics mi ∈ �M such that

mi matches all conditions specified in qualifier set �Q. For example,
for the query described in Listing 2, Dena applies the hypothesis to
all throughput metrics creating a list of expectations. In this list,
one expectation would be EXPECT HYP-LINEAR (x,y) (‘name
=queries_per_sec’,‘name =io_per_sec’). Second, Dena
selects a function that matches the relationship described in the hy-
pothesis. We provide a set of pre-defined functions, however, the
analyst may also define new relations to use with a hypothesis. For
example, if the relationship is LINEAR( ‘name= queries_per
_sec’, ‘name= io_per_sec’) then we match it with a func-
tion

yα,β(xt) = αxt + β (1)

and instantiate the expectation. Third, Dena takes each expecta-
tion and fits the function to the monitoring data. The curve is fit
using an optimization algorithm, i.e., gradient descent, by varying
the free parameters in the function. In particular, for the linear cor-
relation between the database and storage system throughput, the
curve fitting algorithm searches for values of α and β that mini-
mize the squared error from the measured values. The curve fitting
algorithm outputs a confidence score, γ, between 0 ≤ γ ≤ 1 rep-
resenting a goodness of fit where γ = 1 is a good fit and γ = 0
is a poor fit. Dena provides the aggregate confidence score for the
hypothesis and it allows the analyst to zoom-in to get per-context
confidence scores as well. We provide the details on how hypothe-
ses are validated in Section 4.

In the following sections, we provide a detailed description of
the SelfTalk language and the Dena runtime system.

3. SELFTALK LANGUAGE
In this section, we describe how a hypothesis can be declared

in SelfTalk language and how the generated expectations can be
subsequently analyzed using our query language. The SelfTalk lan-
guage has two types of statements: a hypothesis, and a query. The
hypothesis states the analyst’s belief about the behavior of the sys-
tem; it is identified by a unique name, a relation that describes a
relationship between metrics, and a context that indicates the con-
figurations affecting the validity of the hypothesis. Dena processes
the submitted hypothesis and provides results on whether or not the
analyst’s beliefs match the system’s behavior.

To further analyze the results, SelfTalk also allows the analyst
to query and check the validity of the expectations; specifically,
the analyst can query about the confidence of the expectations (re-
sulting from the expansion of a hypothesis), evaluate the fit under
various contexts, and for different sub-components. In addition, the
analyst can obtain averages, rank the expectations, and statistically
analyze the results computed by Dena. We describe how a hypoth-
esis can be expressed in SelfTalk next; we focus on the different
parts: how to specify the metrics, how to define the relation, and
how to specify the validity context.

3.1 Hypothesis

HYPOTHESIS <hypothesisName>
RELATION <relationName> {<metricSet>}
CONTEXT {<contextSet>}

The hypothesis expresses the analyst’s belief about the behav-
ior of the system. Each hypothesis is identified by a unique name;
this allows the hypothesis to be saved in a database and later re-
trieved for future querying. The hypothesis describes a relationship
(defined as the relation) between metrics (selected from a metric

set) for some system configurations (defined as the context). The
relation defines a mathematical function describing the relationship
between metrics, a set of filters to process the monitoring data (e.g.,
remove noise), a method to find the best fit, and a mapping to cal-
culate the confidence score from a relation specific goodness of fit.
The relation is identified by a relation name and it may be used in
several hypotheses. The relation is evaluated for each combination
of metrics contained in a metric set. For example, the analyst may
define that she expects the throughput-like metrics to be linearly
related; in this case, the relation will be evaluated for each pair of
throughput-like metrics from a set of throughput-like metrics. The
hypothesis can also specify a validity range – a set of contexts over
which the analyst expects the relationship to hold true; the con-
text set is described using a set of metric qualifiers; the context set
however also specifies values defining the validity range. In the
following, we describe each component of the hypothesis in detail
next. We leave the details of the processing to Section 4.

Metric: The hypothesis describes a relationship between tuples
of metrics where each tuple is selected from a metric set (also re-
ferred to as the metric class). The metric set, in turn, is constructed
by a join of the available metrics (denoted as M); in more detail,
a hypothesis may define a relationship between two metrics x and
y then, the metric set contains tuples of the form < xi, yj > cho-

sen from M2 = M × M according to the join condition. In
general, Dena supports metric sets of more than two metrics. The
metric set is constructed from an expression evaluated on each met-
ric’s attributes; the metrics that match the expression are included
in the metric set. Each metric is a primitive entity that can be a
performance measurement, a configuration setting, or a compos-
ite of several base performance metrics. Each metric has several
attributes such as its name (e.g., queries_per_sec), the compo-
nent name (e.g., MySQL) from where it is measured, the location
of the component (e.g., hostname of the MySQL instance), and its
unit of measurement (e.g., query/sec for throughput). For exam-
ple, the measure of query throughput, queries_per_sec metric
is defined as

METRIC queries_per_sec AS (
number id,
text component = ‘MySQL’,
text location = ‘cluster101’,
text unit = ‘1/sec’,
number value

)

where the MySQL database is running on hostname cluster101.
Configuration parameters are represented as metrics as well (e.g.,
mysql_cache_size); the configuration metrics are used to estab-
lish a context for the hypothesis. In some cases, it is useful to define
a composite metric built from a combination of several primitive
metrics. The composite metric may be defined persistently within
the Dena system or temporarily by inlining the definition with the
hypothesis. For example, for the cache, it is useful to define the
cache miss-ratio as a composite metric that is computed as the ra-
tio of number of cache accesses (num_cache_gets) and the num-
ber of cache misses (num_cache_misses). The metric set is con-
structed from the description of metrics given with the hypothesis;
Dena selects the metrics by matching the attributes to the condi-
tions specified in the expression (similar to the SQL JOIN and a
WHERE clause). The attributes of a metric are optional (except id
and name) and the metric can be thought of a schema-less relation;
we use only the specified metric attributes to check a metric for in-
clusion into the metric set. The expression allows us to specify very
broad qualifiers to capture a large set of metrics, or be very specific
and capture metrics of a specific component. For example, we can
express a relation between a set of throughput metrics, we specify
the qualifiers as "x.unit =‘1/sec’ and y.unit =‘1/sec’",
or we can express the metrics of a specific cache by specifying
"x.name=‘cache_hits’ and y.name=‘cache_gets’ and
x.location=y.location".
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Relation: The correlation between a set of metrics is described
by a relation. The relation includes functions to filter the data, a
mathematical function describing the relationship, an error function
(e.g., squared error), a method to compute a best-fit (e.g., gradient
descent), and a method to compute the confidence score. Many of
these functions (e.g., the gradient descent optimizer and the method
to compute the confidence score) are independent of the specific re-
lation and may be shared by several relations. We follow an object-
oriented paradigm to implement relations; we explain the details of
our implementation in Section 5.1. To illustrate, we show a SelfTalk
code snippet of the linear relation that is provided with the Dena
runtime system.

DEFINE RELATION linear {
PARAMETER a,b : number,
INPUT x:number-array, y:number-array,
...
FUNCTION confidence
{
OUTPUT confidence:number
LANGUAGE ‘matlab’
SCRIPT
$
y_hat = a.*x .+ b;
confidence = R2(y,y_hat);
//calculate residuals
...

$
}
...

}

It shows the relation containing two parameters and two input
data arrays; the parameters refer to the slope and y-intercept of the
linear line and the two input arrays correspond to the input and out-
put data values obtained by monitoring the system. We focus on the
function to compute the confidence of the relation; the confidence
score is a number between 0.0 and 1.0 representing how well the
hypothesis fits the monitoring data. In the example, we specify the

confidence as the R2 (implemented as a MATLAB script delimited
by $) and we also check the residuals before returning the confi-
dence score.

Context: The relationship between metrics is influenced by the
workload and other system configuration settings – referred to as
the context of the hypothesis. Therefore, simply fitting the expec-
tations to all measured data would lead to false fits. Consider the
expectation EXPECT LINEAR (‘name=queries_per_sec’,
‘name=io_per_sec’) and assume that we get a 50% hit ratio
with a 512MB cache and a 90% hit ratio with a 1GB cache. With
different cache sizes, the exact relationship between the metrics
(‘queries_per_sec’,‘io_per_sec’)will be different. In fact,
the factor α would be 0.5 for a 512MB cache and 0.9 for a 1GB
cache. Specifically, the analyst must provide her belief about the
contexts that the hypothesis is sensitive to. A context is simply a
list of conditions on a set of performance metrics, workload met-
rics, or configuration parameters. In Listing 2, the context is spec-
ified as name=cache_size and value<=512, which states that
the analyst expects the hypothesis to hold true only when the cache
size is less than 512MB. We also support a wild-card operator, e.g.,
name=cache_size and value=*, to indicate that cache_size
is a configuration parameter that may affect the fit. In this case,
Dena will evaluate the expectation for each setting of the configu-
ration separately.

3.2 Query
Dena expands the hypothesis submitted by the analyst into ex-

pectations, fits each expectation to the monitoring data, and stores
the results in a database; these results can be further analyzed by
submitting queries written in SelfTalk. The analyst can query about

the confidence of the expectations that result from the expansion of
the hypotheses, evaluate the fit under various contexts and for dif-
ferent sub-components. We categorize the queries into two types:
i) queries that focus the analysis on particular components, con-
figurations, or confidence values, and ii) queries that modify the
presentation of the results by ordering them based on confidence
score, or grouping them by particular metrics, or by grouping them
by the configuration type.

The general syntax of a SelfTalk query is

1 QUERY <HYP-NAME>
2 [METRIC <METRICS-SET>]
3 [CONTEXT {<CTX-SET>}]
4 [CONFIDENCE {<|>|=|>=|<= <VALUE>>}
5 |{<IN> <RANGE>}]
6 [ORDER BY CONFIDENCE [ASC|DSC]]
7 [RANK BY CONFIDENCE [ASC|DSC]]
8 [GROUP BY METRIC <METRIC>...<METRIC>]
9 [GROUP BY CONTEXT <CONTEXT>...<CONTEXT>]

It consists of three parts: i) the preamble – we need to specify
the name of the hypothesis being queried, e.g., the hypothesis name
(shown in line 1), ii) the query focus – we narrow the analysis by
specifying conditions on the metric set, the context set, and the
confidence score (lines 2-5) and iii) the presentation of results – the
results may be displayed by controlling the ordering based on the
confidence score, and by grouping using a certain metric attributes
or contexts (lines 6-9). We present the details of how queries enable
analysis of the results using two examples next.

All queries include a hypothesis name; the hypothesis name is
used to find the results stored by Dena in the database. If no op-
tions are specified, the results of all expectations that are generated
from the hypothesis are returned — that is, the results all possible
expansions (expectations) of the metric set and context set declared
in the hypothesis. This is equivalent to the SELECT * construct
in SQL; SelfTalk allows the fine-grained analysis to be done with
ease by restricting the analysis to certain sub-components and for
certain contexts. For example, the analyst may issue

QUERY HYP-LINEAR
METRIC (x,y) {

"x.component=‘MySQL’ and x.unit=‘1/sec’
and
y.component=‘Akash’ and y.unit=‘1/sec’"

}
CONTEXT (a) {

"a.name=‘mysql_cache_size’ and a.value=512"
}
CONFIDENCE > 0.9

that returns results from expectations of the linear hypothesis (named
HYP-LINEAR) for throughput-like metrics measured at the Akash
storage server and MySQL only for configurations where the size
of the MySQL cache is configured to 512MB and those expecta-
tions with a confidence score greater than 0.9.

In addition to allowing focused analysis of the results, SelfTalk
allows the analyst to control the presentation of the results of a
query by grouping, ordering, and ranking. We can analyze the ef-
fect of changing the size of the MySQL cache on the throughput by
stating

QUERY HYP-LINEAR
METRIC (x,y) {

"x.component=‘MySQL’ and x.unit=‘1/sec’
and
y.component=‘Akash’ and y.unit=‘1/sec’"

}
ORDER BY CONFIDENCE DSC
GROUP BY CONTEXT (a) {

"a.name=‘mysql_cache_size’ and a.value=*"
}
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to return expectations from the execution of the linear hypothesis
(named HYP-LINEAR) for throughput-like metrics collected from
MySQL and the Akash storage server, grouped by MySQL cache
configurations (where the confidence scores are computed as the
average for each cache configuration) and sorted by the confidence
score in descending order.

4. VALIDATING EXPECTATIONS
Dena expands the hypothesis posed by the analyst to generate a

larger set of expectations by enumerating all possible metrics and
configurations that match the hypothesis. In this section, we de-
scribe the steps taken by Dena to validate each expectation with
the monitoring data and compute the confidence score.

4.1 Overview
An expectation is validated by evaluating how well the relation-

ship described by the hypothesis applies to the monitoring data.
At its core, we apply statistical regression techniques to fit a func-
tion (describing the relationship between metrics) and evaluate the
goodness of fit. While statistical regression techniques have been
studied in great detail elsewhere [17], the three main challenges
exist in the implementation of a generic engine; we need to (1)
process monitoring data collected from many different sources, (2)
evaluate various relationships on the monitoring data, and (3) com-
pute a mapping from the relationship specific goodness of fit to a
human-understandable confidence score.

The first challenge arises from the fact that monitoring data from
a component contains noise and that monitored values from mul-
tiple components may not be aligned in time. Thus, we first filter
the data to make it suitable for statistical regression; filtering re-
moves the outliers in the collected data and aligns the time-series
data. After filtering, we can evaluate if the relation matches the
monitoring data. The second challenge is that the statistical regres-
sion techniques differ for different types of relations; while at the
heart of all expectations is a mathematical function describing a re-
lationship between a set of monitored metrics, the method of fitting
the function differs from closed-form solutions (e.g., for linear re-
gression) to iterative methods such as gradient descent. Finally, we
need to compute a confidence score – a human understandable out-
put between 0.0 (low confidence) and 1.0 (high confidence) from
the relation-specific goodness metric. To aid in the design of a
generic engine, we evaluate a set of commonly asked questions by
analysts and build a taxonomy of relations. In the following, we
describe the taxonomy of relations and describe each of the steps
in more detail. Then, we provide a list of sample relations used to
evaluate the behavior of a multi-tier system.

4.2 Taxonomy
A relation describes a mapping between several metrics. Each

relation specifies a function ŷ = f̂(x) that describes how two met-
rics x and y are expected to be correlated. The relationship may
be comparisons – where the mapping between x and y is a boolean
operator e.g., y < x or regressions – where the mapping between
x and y is a mathematical function e.g., y = ax + b. In addition,

each of the relationships may be time dependent e.g., ŷt = f̂(xt)
or time-independent.

We classify the relations into different categories using the above
criteria as shown in Figure 1. The relations are first classified
into two categories: regressions and comparisons. The relations
classified into regressions are functions that describe a mathemati-
cal relationship between several metrics. An example of a regres-
sion relationship is a linear relationship between two metrics; the
function mapping x to y is described by ŷα,β(x) = αx + β.
The validity of these relations can be evaluated using statistical
regression techniques. The second relation type is a comparison
where the mapping between two metrics is a comparison operator
(<, >, =,≤,≥). In this case, directly applying statistical regres-
sion techniques is difficult. Thus, we evaluate the validity of these

Hypothesis

Regression Comparison

Time
Dependent

Time
Independent

Time
Dependent

Time
Independent

Linear Quanta Less/Eq Monotonically 
Decreasing

(MRC)
Little's Law

Figure 1: Relation Taxonomy: We classify the relations into
different categories.

relations using simple counting ; we validate the relation by count-
ing the fraction of points where the comparison holds true. Each of
the above two categories (regressions and comparisons) can be ap-
plied to time-dependent or time-independent data. Time-dependent
relations treat the input as time-series which relation between input
metrics are considered through time; the input data to the relation is
tuples of metric values with same time-stamps. On the other hand,
time-independent relations treat the data as an unordered list. We
explain the details next.

4.3 Evaluating Expectations
The evaluation of an expectation consists of three steps: (1) col-

lect and filter monitoring data, (2) apply statistical regression and
evaluate for monitoring data, and (3) compute the confidence score.

Step 1 – Filtering Monitoring Data: The monitoring data col-
lected from components have two sources of error: (1) noise in
the data collected from one component, and (2) mis-alignment of
data collected from multiple components. We filter the data values
before evaluating the relationship.

The noise in the monitoring data is seen as outliers in the data.
The outliers occur when data is collected from components during
their initialization phases either at start-up or after a configuration
change, and due to interference from background tasks. One such
example is the measurement of the cache_hits (the number of
cache hits) and cache_misses (the number of cache misses)
from a cache. During the initialization phase (i.e., cache warm-
up), the cache misses are high as many of cache accesses experi-
ence cold misses since the cache is empty. However, as the cache
warms up, the number of cache misses reduces steadily (conversely
the number of cache hits increases steadily) until the values reach
steady state. Similarly, infrequent background tasks from the op-
erating system or transient network bottlenecks introduce noise in
the measurements as well. We filter these outliers before apply-
ing statistical regression. The analyst can instruct Dena to apply
any filtering technique. We choose to use percentile filtering due
to its simplicity. Percentile filters are generic; they make no as-
sumption about the distribution of data other than that the number
of samples is large enough to cover most regions of the underly-
ing distribution. We use percentile filtering to trim the top t% and
the bottom b% of sampled data. By removing these samples, the
percentile filter keeps the samples which form the majority in the
distribution. Based on experience and insight about the process of
collecting monitoring data, the analyst may specify filtering thresh-
olds t% and b% thereby overriding the default values. The filtering
process is different for time-independent relations; in these, we per-
form percentile filtering per configuration value rather than on the
entire dataset.

Time-series data pose an additional challenge where the data
measured at different components may be misaligned due to clock
skew as well as due to causality between components. We evaluate
time-series data by matching (i.e., joining in the database termi-
nology) the sampled values using the timestamp. Causality be-
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tween components can also account for some misalignment be-
tween the sampled metrics. For example, a change in the workload
is reflected at the metrics collected at the higher layers (e.g., the
database) before it is seen in the metrics collected in the lower lay-
ers (e.g., disk). While there are various sophisticated methods for
aligning time-series data, we find that simple techniques of group-
ing values using a coarser-time granularity and using moving av-
erage filters work well; for example, we align the data values by
grouping them into a coarse timestamp granularity (e.g., 10 sec-
onds). We also use a moving-average filter. A moving average is
used to analyze a set of data points by creating a series of aver-
ages of adjacent subsets of the full data set; this smooths out short-
term fluctuations while maintaining the long-term trends. Aligning
time-series data by estimating the clock skew and delay between
components is an area for improvement; we leave this optimization
as future work.

Step 2 – Performing Regression: After filtering the monitoring
data, we perform statistical regression to evaluate how well the hy-
pothesis fits the measured values. We find the best values for free
parameters to reduce the squared error between the hypothesis and
the measured values. For example, consider the linear relation,

ŷα,β(xt) = αxt + β (2)

with two free parameters α – the slope of the line, and β – the y-
intercept of the line. The best fit of the relation to the measured data
is obtained when the squared-error between the predicted values
and the measured values is minimized. We define the error (i.e.,
how the relation deviates from the measured values) as

ξ(α, β) =
X

<x,y>

(y − ŷα,β(x))2 (3)

and we find the best-fit of the relation by minimizing the squared er-
ror by mapping the problem of reducing the squared error as an op-
timization problem and use standard optimization techniques such
as gradient descent (using the partial derivatives if given) to find
the best parameter values. In some cases, the best parameter values
can be obtained from closed-form solutions (such as for linear re-
gression); we opt for the closed-form solution rather than iterative
search in these cases.

Step 3 – Computing the Confidence Score: After applying sta-
tistical regression and optimizing the free parameters, we evaluate
how well the relation describes the data and report the confidence
score. The confidence score is a human-understandable number be-
tween 0.0 and 1.0, which indicates a poor and good fit respectively.
The evaluation of the confidence score is dependent on the relation
– whether the relation is a comparison or regression.

For the comparison relations, the confidence score is the fraction
of data when it holds true; we count the number of times the
comparison evaluates to true and divide by the total number of
monitoring data points. For regression functions (i.e., those with a
mathematical relationship), we use the coefficient of determination,

R2, to compute the confidence score. The R2 is a fraction between

0.0 and 1.0. An R2 value of 0.0 indicates that the function does
not explain the relationship between the two metrics. Assuming a

relation is defined as ŷ = f̂(x), the coefficient of determination is
defined as

R2 = 1− SSerr

SStot
(4)

SSerr =
X

i

(yi − f̂(xi))
2

(5)

SStot =
X

i

(yi − ȳ)2 (6)

where SSerr is the residual sum of the squares, SStot is the total

sum of squares, and ȳ = mean(y). However, simply using R2

to evaluate the fit may be incorrect. To better evaluate the fit, we
perform a secondary test using the residuals of the regression; the

residuals are the vertical distances from each point in the fitted line
to the monitoring data. A good fit has the residuals equally above
and below the fitted line. If the residuals are not randomly scattered
– indicating a systematic deviation from the fitted line then, the

R2 value may be misleading; thus we report that the fit has a low
confidence score.

4.4 Validating Performance of a Multi-tier
Storage System

In this section, we provide a sample of hypotheses that we issue
to understand and validate the behavior of a multi-tier storage sys-
tem consisting of a MySQL database using a virtual volume hosted
on a storage server. The details of the storage system are given in
Section 5.2. We choose one or two hypotheses from each of the cat-
egories we describe in the relation taxonomy. For each hypothesis,
we provide the high-level question the analyst is probing, the un-
derlying regression/comparison function tested in the hypothesis,
the filtering applied to the monitoring data, and the optimization
algorithm used to find the best fit.

Time-dependent Regression – Linear/Little: The LINEAR hy-
pothesis is one of the simplest hypothesis that an analyst can issue
to Dena; we issue this hypothesis to diagnose traffic patterns along
the storage path. Specifically, as an analyst, we ask the question –
“I expect the throughput measured at the storage system to be lin-
early correlated with the throughput measured at MySQL” or more
generally “I expect the throughput metrics along the storage path
to be linearly related” with the belief that as we increase the load
at the MySQL database, the load on the underlying storage server
will increase correspondingly. The linear relation is defined as

ŷα,β(xt) = αxt + β (7)

with two free parameters: α and β. We filter the time-series data
by first removing the outliers using percentile filtering and then
smoothing the values with a moving average filter. The line is fit
to the monitoring data using linear regression and we use the co-
efficient of determination (R2) as the confidence score. We further
verify the fit using the residuals to determine if the data does not
systematically deviate from the hypothesis. If the residuals are not
valid, we report that the hypothesis is not a good fit.

Dena can incorporate results from models, such as those derived
from operational laws, to verify the behavior of a multi-tier system;
an example of this is the LITTLE hypothesis that defines a relation-
ship between throughput and latency using Little’s law [8]. Little’s
law states that if the system is stable then, the response time and
throughput are inversely related; we issue this hypothesis to verify
that the behavior of the system adheres to the behavior explained by
operational laws; a stable system follows these laws. For example,
the analyst can express her belief in operational laws by making a
high-level hypothesis that “I expect the throughput measured at the
storage system is inversely correlated with the latency measured
at MySQL”. For an interactive system, such multi-tier storage sys-
tems, Little’s law is expressed as

X̂N ,Z(Rt) =
N

Rt + Z (8)

with two free parameters: N and Z , which are number of clients
and average think time respectively, and Xt and Rt denoting through-
put and response time. Similar to the processing of LINEAR rela-
tion, we filter the data by first removing the outliers using percentile
filtering and then smoothing the values with a moving average fil-
ter. The curve is fit to the monitoring data using gradient descent

optimization, and we use the coefficient of determination (R2) as
the confidence score. We further verify the fit using the residuals to
determine if the data does not systematically deviate from the hy-
pothesis; if the residuals are not valid, we report that the hypothesis
is not a good fit.

Time-independent Regression – Quanta: Our storage system
uses the quanta-based scheduler to divide the storage bandwidth
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among several virtual volumes. The quanta-based scheduler par-
titions the bandwidth by allocating a time quantum where one of
the workloads obtains exclusive access to the underlying disk. For
modeling the quanta latency, we observe that the typical server sys-
tem is an interactive, closed-loop system. This means that, even if
incoming load may vary over time, at any given point in time, the
rate of serviced requests is roughly equal to the incoming request
rate. Then, according to the interactive response time law [8]:

Ld =
N

X
− Z (9)

where Ld is the response time of the storage server, including both
I/O request scheduling and the disk access latency, N is the number
of application threads, X is the throughput, and Z is the think time
of each application thread issuing requests to the disk. We then use
this formula to derive the average disk access latency for each ap-
plication, when given a certain fraction of the disk bandwidth. We
assume that think time per thread is negligible compared to request
processing time, i.e., we assume that I/O requests are arriving rela-
tively frequently, and disk access time is significant. Then, through
a simple derivation, we arrive at the following formula

Ld(ρd) =
Ld(1)

ρd
(10)

where Ld(1) is the baseline disk latency for an application, when
the entire disk bandwidth is allocated to that application. This for-
mula is intuitive. For example, if the entire disk was given to the
application, i.e., ρd = 1, then the storage access latency is equal to
the underlying disk access latency. On the other hand, if the appli-
cation is given a small fraction of the disk bandwidth, i.e., ρd ≈ 0,
then the storage access latency is very high (approaches ∞). The
QUANTA hypothesis expresses the above belief from operational
law model where we expect the storage access latency of the appli-
cation to be inversely related to the allocation time fraction. The
QUANTA hypothesis uses the inverse relationship that is described
as

ŷα,β(x) =
α

xβ
(11)

where the waiting time at the scheduler (y) is inversely related with
the time fraction (x) given to the application. We filter the latency
values using the percentile filter and average the samples (for each
quanta setting) before performing regression. We find the best-fit

for the free parameters using gradient descent and we use R2 as the
confidence score and use the residuals as a secondary check.

Time-dependent Comparison – Less/EQ: The LESS/EQ hy-
pothesis is used to answer many storage questions. For example,
the analyst can check on a configuration parameter — “I expect the
current size of the cache is less than or equal to the maximum size
(as defined in the configuration)” or check on a performance met-
ric — “I expect the latency (e.g., response time) measured at higher
level components (MySQL) is higher than the latency measured at
the lower level components (disk)”. We remove the outliers using
percentile filtering and use a moving average filter to synchronize
the samples over time. There is no regression step and we report the
confidence score as the fraction of samples where the comparison
(≤) holds true.

Time-independent Comparison – MRC/Constant: The miss-
ratio curve (MRC) relation describes the behavior of a cache; it
states that the cache miss-ratio (i.e., the ratio of cache misses to
the cache accesses) is a monotonically decreasing curve with re-
spect to the cache size. We capture this relationship in two ways:
by comparing to a user-provided miss-ratio function or systemati-
cally checking that the curve is indeed monotonically decreasing.
In the first case, the analyst may provide the expected miss-ratio
curve from a model (i.e., using Mattson’s stack algorithm [13]) or
from a cache simulator; with either approach, we are given a list
of tuples of the form 〈c, m〉 (where c is the cache size and m is

the miss-ratio) and we evaluate the confidence using R2. In the
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Figure 2: Testbed: We show our experimental platform. It
consists of a storage server (Akash) and a storage client
(DBMS) connected using NBD.

second method, for each cache size c, we obtain the values of the
miss-ratio and apply the percentile filter; the filtering concentrates
the miss-ratio samples into a cluster (for each cache size c). Then,
we average the miss-ratios and use the resulting list 〈c, m̄〉 of tu-
ples (where m̄ is the average of the miss-ratios for cache size c) to
sort by cache sizes in ascending order and verify that the miss-ratio
keeps decreasing (or remains flat) as the cache size is increased. We
count the fraction of times the comparison holds true and report it
as the confidence score.

The versatile CONST hypothesis checks if the values of a metric
are constant; we use this relation to issue hypothesis of the form “I
expect that the size of the cache (i.e., the number of items stored in
the cache) remains constant”. We note that there is a small fraction
of time (during start-up) when the size is not equal to the capacity
which is filtered by the percentile filter. We filter the data using
percentile filter to remove outliers and return high confidence if
samples are almost constant – that is, the variation in the values is
within a small ratio of its mean; we compute the ratio of the mean
of x and divide by the standard deviation. If the ratio is less than
a threshold, we report a confidence score of 1, else we report a
confidence score of 0.

5. TESTBED
In this section, we describe the implementation of Dena and

our experimental multi-tier infrastructure consisting of a MySQL
database running on a virtual storage system, called Akash.

5.1 Prototype Implementation
The Dena runtime system is composed of multiple parts: a front-

end consisting of the SelfTalk parser, a core regression engine, and
a database backend storing the monitoring data. The monitoring
data is collected from existing software; we use built-in instrumen-
tation such as the MySQL/InnoDB monitor to get statistics from the
database, vmstat and iostat to obtain statistics from the oper-
ating system, and built-in instrumentation from our storage server.
We implement the core of the statistical regression algorithms using
MATLAB utilizing JDBC to fetch data from the backend database.
We provide simple relations that can be utilized by an analyst new
to Dena; this includes all the relations we describe in Section 4.4
plus we provide relations describing exponential and polynomial
curves, and all boolean comparisons.

The analyst can specify the hypothesis at the command-line or
by referring Dena to a file; given a hypothesis Dena parses the de-
tails and expands the hypothesis to all possible expectations. Dena
instantiates a new object for each expectation, obtains the data from
the database, fits the relation to the monitoring data, and computes
the confidence score. When the fitting is complete, the details of
the hypothesis, the set of expectations, the final fitted values of the
free parameters, and the descriptions of the contexts are stored into
the database for future analysis.
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5.2 Platform and Methodology
Our evaluation infrastructure consists of two machines: (1) a

database server running OLTP workloads and (2) a storage server
running Akash [22] to provide virtual disks. Akash is a virtual stor-
age system prototype designed to run on commodity hardware. It
uses the Network Block Device (NBD) driver packaged with Linux
to read and write logical blocks from the virtual storage system, as
shown in Figure 2. The storage server is built using different mod-
ules:

• Disk module: The disk module sits at the lowest level of the
module hierarchy. It provides the interface with the underlying
physical disk by translating application I/O requests into pread()/
pwrite() system calls, reading/writing the underlying physical
data.

• Quanta module: The quanta module partitions the disk band-
width using a quanta-based I/O scheduler [22]. The scheduler
provides a fraction of the disk time to each workload sharing the
disk volume.

• Cache module: The cache module allows data to be cached in
memory for faster access times.

• NBD module: The NBD module processes I/O requests, sent by
the client’s NBD kernel driver, to convert the NBD packets into
calls to other Akash server modules.

Due to space constraints, we only provide a brief description of
each module. Additional details can be found in [22].

We use three workloads: a simple micro-benchmark, called UNI-
FORM, and two industry-standard benchmarks, TPC-W and TPC-
C. We run our Web based applications (TPC-W) on a dynamic con-
tent infrastructure consisting of the Apache web server, the PHP ap-
plication server and the MySQL/InnoDB (version 5.0.24) database
engine. We run the Apache Web server and MySQL on Dell Pow-
erEdge SC1450 with dual Intel Xeon processors running at 3.0
Ghz with 2GB of memory. MySQL connects to the raw device
hosted by the Akash server. We run the Akash storage server on a
Dell PowerEdge PE1950 with 8 Intel Xeon processors running at
2.8 Ghz with 3GB of memory. To maximize I/O bandwidth, we
use RAID-0 on 15 10K RPM 250GB hard disks. Non-web appli-
cations (TPC-C) utilize the same MySQL and storage server in-
stances; however, they do not use the machine running the Apache
web server. The monitoring data is collected from the underlying
operating system (using Linux utilities vmstat and iostat), the
MySQL database, and the Akash storage server. The collected met-
rics are timestamped using gettimeofday().

Specifically, we use the metrics that were collected over a period
of 6 months [22]. The collected data includes storage-level metrics
(from the Akash storage server), database-level metrics (gathered
by instrumenting MySQL), and OS-level metrics (using vmstat).
We collected the data for two physical machines, i.e., the database
machine and the storage machine, and for four applications, i.e.,
four virtual disk volumes and database instances. The collected
metrics, after pruning, result in over 10GB of data represented as
flat files; we load these files into the database for analysis.

6. RESULTS
We evaluate the efficacy of Dena to validate overall system be-

havior and to understand per-component behavior. To achieve this,
we issue broad high-level hypotheses describing the relationships
in a multi-tier storage system and check the validity of these rela-
tionships. Next, we issue specific queries to provide insights into
the behavior of a specific component and also one component’s ef-
fect on other components within the multi-tier system. Then, we
present additional results studying cases where there is a mismatch
between the analyst’s belief and the monitoring data. Finally, we
present measurements calculating the cost and time breakdown of
executing a hypothesis.

Hypothesis Expectations Avg. Confidence
LINEAR 3072 86%
LESS/EQ 3488 98%
LITTLE 3290 92%

Table 1: Expectations. We show the number of expectations
generated for each high-level hypothesis.

6.1 Understanding the Behavior of the
Overall System

We issue several broad high-level hypotheses to check the over-
all behavior of the system. We present the correlations that Dena
discovers for three simple hypotheses: (1) LINEAR – expects that
metrics of the same type are linearly correlated, (2) LESS/EQ
– states that round-trip latency is additive across layers and (3)
LITTLE – states that throughput and latency adhere to the Little’s
law. Table 1 shows the number of expectations generated for each
hypothesis for all contexts. Dena generates the expectations auto-
matically for a given hypothesis. Figure 3 shows the correlations
discovered by Dena in a graph where the nodes represent metrics
and the edges indicate a correlation. To simplify the presentation,
we only show metrics related to the throughput and latency for each
module. In addition, we only show results where we configure the
cache to 1 GB resulting in a 50% miss-ratio and allocate the en-
tire disk bandwidth to the application. We explain the correlations
discovered for the LESS/EQ and LITTLE in detail next.

For the LINEAR hypothesis, shown in Figure 3(a), we find two
clusters of metrics: a set of throughput related metrics and a set
of latency related metrics. First, we see that the set of throughput
metrics are linearly correlated. This is expected as the storage is
configured as a single path from the NBD module to the disk mod-
ule (see Figure 2). The cache and quanta modules do not affect the
linear correlation between the throughput seen in the NBD mod-
ule (nbd_enter) and the disk module (disk_enter) because
while the cache causes less I/Os to be issued to disk, an increase in
the rate of I/O requests entering the storage system still results in a
corresponding increase in the rate of disk I/Os. Similarly, latency
across components is linearly correlated as well except the quanta
module; it controls the number of requests entering disk leading
to an additional queuing delay between the disk_latency and
the quanta_latency breaking the linear relationship across la-
tencies [22].

We develop the LESS/EQ hypothesis by using the information
of the structure of Akash which allows us to hypothesize that laten-
cies (similarly throughput) measured in some modules are less than
the latencies measured in other modules. Figure 3(b) shows our re-
sults using a directed graph where the arrowhead points from the
smaller metric to the larger metric. For example, the cache module
sits above the quanta module and forwards requests only on cache
misses. Therefore, with a 50% miss-ratio, the latency at the cache
module is less than the quanta module. This is shown as an ar-
row from cache_latency to quanta_latency. Conversely,
the number of requests entering the quanta module is less than the
number of requests entering the cache module, shown as an arrow
from quanta_enter to cache_enter.

As Akash is a closed-loop storage system, we hypothesize that
performance adheres to Little’s law [8] — that is, the throughput
and latency metrics follow the interactive response time law and
thus are inversely proportional. Figure 3(c) shows that indeed the
system complies with Little’s law as the throughput and latency
metrics are indeed correlated. disk_latency is not correlated
with Little’s law as the quanta module self-adjusts its scheduling
policy to varying disk service times [22] leading to a weak correla-
tion with the disk_latency.

6.2 Understanding Per-Component Behavior
Next, we explore the behavior of different storage server compo-

nents by studying the correlations found using different hypotheses.
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Figure 3: Correlations. We show the pairwise correlations we discover for different analyst hypotheses in the above graph. The
nodes represent different metrics and the edges show the correlation. The above results were gathered with a 1GB cache
resulting in a miss-ratio of 50%, and the entire disk bandwidth was allocated to the application.

We focus on the two major components: the cache and the quanta
scheduler modules within Akash. Then, we present results showing
how Dena can be used to study interactions between multiple com-
ponents as well; to illustrate this, we focus on the effect of cache
inclusiveness in multi-tier caches.

Understanding the Cache: We study the effect of caching on
the performance of the storage system by issuing several hypothe-
ses that provide an insight into its behavior: MRC – indicates the an-
alyst’s belief that the cache performance will improve (i.e., its miss-
ratio will decrease) as the size of cache is increased, LESS/EQ
– states that caching improves performance by reducing latency
where the latency to access items from the cache is lower than the
latency of accessing items from the underlying disk, and LINEAR
– states the belief that since the cache size impacts performance,
the linear relation between metrics must account for the size of
the cache as a context. We evaluate these beliefs using the UNI-
FORM workload which has a miss-ratio of 75% with a small cache
(256MB), 50% with a medium cache (512MB) and a 12% with a
large cache (896MB). Figure 4 shows the results of the MRC and
LINEAR hypotheses. The results from the TPC-W workload are
similar and we omit these results due to space constraints.

Figure 4(a), shows the miss-ratio for the UNIFORM workload.
As expected, the miss-ratio is monotonically decreasing – a straight
line from approximately 1.0 (many misses) with a small cache to
near 0.0 (many hits). Dena computes a confidence score of 0.99
for the miss-ratio curve. Regardless of the cache size, caching pro-
vides a benefit in terms of performance. This improvement can
be checked using the LESS/EQ hypothesis; Dena reports a confi-
dence score of 1.0 for all cache sizes indicating that the throughput
measured at the cache is higher than the throughput at the under-
lying disk and the latency at the cache is lower than the latency of
fetching data from disk.

The detailed impact on the performance from different cache
sizes can be obtained by issuing the LINEAR hypothesis as seen
in Figures 4(b)- 4(c). Each plot shows three lines corresponding
to three cache sizes: a small cache (shown in red with squares), a
medium cache (shown in green with triangles), and a large cache
(shown in blue with circles). The points are the samples (before
percentile filtering) obtained through monitoring and the line is the

best-fit of the relation described in the hypothesis. The plots show
that performance can indeed be improved by increasing the size of
the cache; the throughput ratio between the cache and the disk (i.e.,
the factor of improvement) is 1.25, 2, and 8 for small, medium, and
large cache sizes respectively. Similar factors are seen in the re-
duction of the access latency at the cache and the underlying disk
latency. These results also indicate the importance of filtering for
accuracy of hypothesis verification.

Understanding the Quanta Scheduler: The quanta scheduler
is the mechanism Akash uses to proportionally allocate the disk
bandwidth among multiple storage clients. As we describe in Sec-
tion 4.4, the effect on performance can be modeled using opera-
tional laws. In this case, we observe that the Akash is a closed-loop
system where the rate of serviced requests is roughly equal to the
incoming request rate. Then, by using the interactive response-
time law, we derive the relationship that the latency as seen from
the quanta module varies inversely with fraction of the disk band-
width allocated to the workload – that is, as the fraction of disk
bandwidth is halved, the per-request latency doubles.

Figure 5 presents the results obtained from Dena for the UNI-
FORM workload. It shows three curves showing the results for
the small, medium, and large cache sizes. In addition, we plot
the measured values of the quanta latency for comparison. The
results show that our belief that the latency varies inversely to the
disk bandwidth fraction is correct; the fitted curve closely matches
the observed values resulting in confidence scores of 0.94, 0.94,
and 0.93 for the small/medium/large caches respectively. Using
the QUANTA hypothesis allows us to understand the disk perfor-
mance as well. Specifically, Dena shows that the confidence score
for the large cache is slightly smaller than the small and medium
cache sizes. The reason is that there is a higher variability of the
average disk latency when (i) the underlying disk bandwidth isola-
tion is less effective due to frequent switching between workloads
and (ii) disk scheduling optimizations are less effective and reliable
due to fewer requests in the scheduler queue. However, even with
this variability, the underlying relationship is still inverse leading
Dena to report a high confidence score.

Understanding Two-tiers of Caches: In a multi-level cache hi-
erarchy using the standard (uncoordinated) LRU replacement pol-
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Figure 4: Understanding the Cache Behavior: We look at the impact of caching on the performance of the storage server by
studying the miss-ratio curve and comparing the the throughput and latency across the cache module within Akash.
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Figure 5: Understanding the Quanta Behavior: We see that
the impact of the quanta scheduler is inverse where halving
the disk bandwidth fraction leads to a doubling of the quanta
latency.

icy at all levels, any cache miss from cache level qi will result in
bringing the needed block into all lower levels of the cache hier-
archy, before providing the requested block to cache i. It follows
that the block is redundantly cached at all cache levels, which is
called the inclusiveness property [25]. Therefore, if an application
is given a certain cache quota ρi at a level of cache i, any cache
quotas ρj given at any lower level of cache j, with ρj < ρi will be
mostly wasteful. We can verify this behavior using two hypothesis
based on the MRC hypothesis. Due to cache inclusiveness, the ana-
lyst expects that by increasing the size of the first-level cache (i.e.,
the MySQL buffer pool) the performance of the second-level cache
(i.e., the miss-ratio at the storage server cache) steadily decreases
due to lower temporal locality.

We perform the analysis by stating that the relationship between
the miss-ratio at the storage cache and the size of the MySQL buffer
pool size is monotonically increasing; the context of the hypothe-
sis is the storage cache size. Given this hypothesis, Dena presents
these results grouped by each storage cache size. We present the
results graphically for the TPC-W workload; the results from TPC-
C are similar. Figure 6 shows this behavior for three different
storage cache sizes: small (128MB), medium (512MB), and large
(896MB) where the lines indicate the best-fit regression and the
points are measured values. For the small storage cache (shown
in blue with squares), we see that the miss-ratio is high at 80%
for small MySQL buffer pool sizes but quickly increases to 100%
for medium to large MySQL buffer pool sizes. For a large storage
cache (shown in red with circles), the effect is more clear; the miss-
ratio for a small MySQL cache is less than 25% but the miss-ratio
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Figure 6: Understanding the Two-tier Cache Behavior: We
see the effect of cache inclusiveness in the miss-ratio at the
second-level cache. The miss-ratio increases steadily as the
size of the first-level cache is increased.

worsens steadily as the MySQL cache is increased where it crosses
50% after 512MB of MySQL buffer pool and over 90% for very
large MySQL cache sizes.

6.3 Understanding Mismatches between
Analyst Expectations and the System

There can be a mismatch between the analyst’s beliefs and the
monitoring data; this can occur either due to a fault in the system
or from a misunderstanding of the system by the analyst. In ei-
ther case, Dena reports low confidence scores and the analyst may
probe deeper by issuing different hypotheses to diagnose faults or
to improve her understanding of the system. In the following, we
present three cases of mismatch; we test for cases where (i) the
system is faulty – we induce a fault in the cache resulting in errors
in the cache replacement policy, (ii) the hypothesis is faulty – we
hypothesize that the behavior of the quanta scheduler is linear, and
(iii) the context is faulty – we hypothesize the metrics of the same
type are linearly correlated but fail to provide the context informa-
tion that the size of the storage cache may affect the relationship.

System is Faulty: In the first case, we show results showing
how Dena can be used to detect a fault in the system; we de-
tect a fault in the cache replacement policy using the MRC hy-
pothesis which states that “I expect the cache misses to decrease
monotonically with increasing cache size”. We run the UNIFORM
workload for this experiment; in an earlier case, we have shown
that the UNIFORM workload has a straight line as the miss-ratio
curve, shown in Figure 4(a), and that with a fault-free cache re-
placement algorithm, the curve is indeed monotonically decreas-
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Figure 7: Different Errors: Dena does not expect the analyst to issue correct hypotheses or the system to behave correctly. In
both cases, there is a mismatch between the analyst and the system leading to low confidence scores. We show three such
cases.

ing. Now we induce a fault in the cache replacement algorithm that
reduces caching benefit; it has more cache misses than expected for
some cache sizes as shown in Figure 7(a). Due to the fault, Dena
is not able to validate the relationship using the monitoring data;
this leads Dena to report a very low confidence score of 0.24. This
scenario highlights one use-case where the analyst is confident in
her hypothesis and thus can conclude that the system is faulty.

Hypothesis is Faulty: Another case where there is a mismatch
between the analyst and the system is if the analyst’s belief is in-
correct; we test a case by issuing the hypothesis that we expect
the “latency of the quanta module is linearly related with the disk
bandwidth fraction”. During the design phase of Akash, we made
a similar assumption; we noticed that the throughput of the storage
system varies linearly with the disk bandwidth fraction (by apply-
ing Little’s law) and incorrectly concluded that the effect on latency
is linear as well. We have shown that the relationship is indeed in-
verse earlier in Figure 5; the error is noticed by Dena, as shown
in Figure 7(b), where the expected line does not match the moni-
toring data. In this case, Dena reports a confidence score of 0.8.
This scenario describes the second use-case where the analyst initi-
ates a dialogue to understand the behavior of the system by issuing
hypotheses (correctly or incorrectly) and obtaining feedback on its
validity.

Context is Faulty: In the last case, we re-issue the LINEAR hy-
pothesis but fail to identify that the size of the cache may affect the
validity of the hypothesis. With an incorrect context, the relation
cannot be fit; as Figure 7(c) shows, the data values form several
lines with different slopes and y-intercepts and no single line satis-
fies the monitoring data. With an incorrect context, the best-fit of a
line is a null fit and the confidence score is 0.0.

6.4 Cost of Hypothesis Execution
We also evaluate the cost of executing a hypothesis by measuring

the time taken to fetch the data from the database and the time
needed to perform statistical regression.

Our knowledge base is stored in a relational DBMS (PostgreSQL)
and we use JDBC to fetch the data to be used by MATLAB for
data processing. Our analysis shows that a majority of time is spent
fetching the data from the DBMS and not in data processing (MAT-
LAB). However, we also performed further analysis by consider-
ing monitoring data over longer time intervals (6 months) thereby
stressing MATLAB. In this longer time interval, with roughly 1.5M
samples, the time spent inside MATLAB is under 3 seconds. Simi-
larly, in this case, the majority of the time is spent fetching the data
from the DBMS/Disk.

In more detail, Figure 8 presents our results for queries accessing
upto a week of monitoring data. It shows that a large fraction of the
time is spent fetching the data from the database and a small frac-
tion spent doing statistical analysis. Specifically, our results show
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Figure 8: Timing of Hypothesis Execution: We measure the
time to execute an expectation and notice that the bulk of the
cost is fetching the data from the database while the time
needed to perform statistical regression is small.

that it takes roughly 1 to 1.5 seconds (average) to fetch the data for
an expectation and less than 40ms to find the best-fit. The com-
putation cost is the least for comparison relations; these perform
simple counting thus require less than 5ms to report the confidence
score. The regression cost is higher as we need to fit the line to the
monitoring data; the time needed to find the closed-form solution
for LINEAR is 25ms and the time needed for QUANTA (inverse) is
39ms on average.

7. RELATED WORK
Related work in the area of fault diagnosis has focused on four

approaches: (i) using statistical correlations [1, 2, 4, 9, 24], (ii)
using models [18, 23], (iii) using specialized languages [11, 12,
16], and (iv) using fine-grained profiling [5, 7].

The statistics based approaches assume that the system is mostly
correct and detect anomalies as changes from the norm. PeerPres-
sure [24] extends the analysis by comparing configuration across
machines. Pinpoint [2] and Magpie [1] are statistical tools for fault
detection in component-based Internet service. Another approach
is to use invariants – those metric correlations that hold in a variety
of conditions as the correctness measure [9]. Cohen et al. [4] cor-
relate system metrics to high-level states to find the root cause of
faults. In contrast to our work, these only study simple correlations
and statistical deviations, whereas we begin with a high-level hy-
pothesis and analyze how the system’s behavior matches with this
hypothesis.

Model-based approaches leverage analytical models provided by
the analyst to contrast system-behavior and localize mismatches
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[18, 23]. The benefit of this approach is the clear relationship be-
tween the metrics and high-level system design. However, devel-
oping detailed models is difficult. While our hypotheses require an
understanding of the system, we do not require the relationships
described by the hypothesis to be always correct, and can inform
the analyst of its validity.

Language based approaches include MACE [11], TLA+ [12],
PCL [14], PSpec [15] and Pip [16]. They allow programmers to
express their expectations about the system’s communication struc-
ture, timing, and resource consumption. PSpec [15] is a perfor-
mance checking assertion language that allows system designers to
verify their expectations about a wide range of performance prop-
erties. The type of assertions of PSpec are similar to SelfTalk com-
parison relations. Also, similar to SelfTalk, PSpec uses a relational
approach to represent and query monitoring data [19]. However,
PSpec lacks the ability to use mathematical functions as the ba-
sis of checking the behavior of the system. Similar to our work,
Pip [16] is an infrastructure for comparing actual behavior and ex-
pected behavior of a distributed system, expressed through a declar-
ative language. However, unlike our work, Pip requires the source
to be modified by adding some special annotations. In general,
in contrast to the existing language based approaches, our work
mainly targets users such as performance analysts who have a gen-
eral insight into the system’s behavior but lack the knowledge of
the details and have no access to the system’s source code.

Performance analysis tools [5, 7] allow programmers to analyze
the performance of a system to find sources of inefficiencies. These
approaches are useful for a programmer who has detailed insight
about the system and has access to fine-grained profiling. While
our approach can be used for the same purposes, it also provides,
through hypotheses, a common knowledge shared by the parties in-
volved in different life cycles of a system, mainly post-deployment
where effective maintenance is the priority.

8. CONCLUSIONS
We introduce SelfTalk – a declarative high-level language, and

Dena – a novel runtime tool, that work in concert to allow analysts
to interact with a running system, by hypothesizing about expected
system behavior, and posing queries about the system status. Us-
ing the given hypothesis and monitoring data, Dena applies sta-
tistical models to evaluate whether the system complies with the
analyst’s expectations. The degree of fit is reported to the analyst
as confidence scores. We evaluate our approach on a multi-tier dy-
namic content web server consisting of a Apache/PHP web server,
a MySQL database using storage hosted by a virtual storage sys-
tem called Akash and find that Dena can quickly validate analyst’s
hypotheses and helps to accurately diagnose system misbehavior.
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