
Adaptive Learning of Metric Correlations for Temperature-Aware Database
Provisioning

Saeed Ghanbari, Gokul Soundararajan, Jin Chen†, Cristiana Amza
Department of Electrical and Computer Engineering

†Department of Computer Science
University of Toronto

Abstract

This paper introduces a transparent self-configuring ar-
chitecture for automatic scaling with temperature aware-
ness in the database tier of a dynamic content web server.
We use a unified approach to achieving the joint objectives
of performance, efficient resource usage and avoiding tem-
perature hot-spots in a replicated database cluster.

The key novelty in our approach is a lightweight on-line
learning method for fast adaptations to bottleneck situa-
tions. Our approach is based on deriving a lightweight per-
formance model of the replicated database cluster on the fly.
The system trains its own model based on perceived corre-
lations between various system and application metrics and
the query latency for the application. The model adjusts
itself dynamically to changes in the application workload
mix. We use our performance model for query latency pre-
diction and determining the number of database replicas
necessary to meet the incoming load. We adapt by adding
the necessary replicas, pro-actively in anticipation of a bot-
tleneck situation and we remove them automatically in un-
derload. Finally, the system adjusts its query scheduling
algorithm dynamically in order to avoid temperature hot-
spots within the replicated database cluster.

We investigate our transparent database provisioning
mechanism in the database tier using the TPC-W industry-
standard e-commerce benchmark. We demonstrate that our
technique provides quality of service in terms of both per-
formance and avoiding hot-spot machines under different
load scenarios. We further show that our method is robust
to dynamic changes in the workload mix of the application.

1 Introduction

This paper introduces a new pro-active resource alloca-

tion technique based on on-line learning for the database

back-end of dynamic content web sites. Dynamic content

servers are complex systems which commonly use a three-

Web
Server

Users
Application

Server
Database

Server

HTTP
Requests

Application
Function Calls

SQL Queries

SQL ResponsesFunction ReturnsHTML
Pages

Figure 1. Three-tier Architecture

tier architecture (see Figure 1) that consists of a front-end

web server tier, an application server tier that implements

the business logic, and a back-end database tier that stores

and queries the dynamic content of the site. The cooling

and power costs of gross hardware over-provisioning for

each application’s estimated peak load are making efficient

resource usage crucial for large sites hosting several appli-

cations.

Fully-transparent, provisioning solutions [5, 12, 23] have

been recently introduced to address this problem. These so-

lutions add servers to an application’s allocation based on

queuing models [5, 26], utility models [23, 25], or mar-

ketplace approaches [9]. These existing approaches have

demonstrated good accuracy in simulations or experimen-

tally. On the other hand, they typically do not model

multiple database replicas as part of their solution search

space [5, 14, 15, 25, 26]. The challenge lies in accu-

rately modeling the behavior of a replicated database back-

end tier. Many factors, such as database concurrency con-

trol, the wide range of query execution times typical in e-

commerce workloads, load balancing policy, caching ef-

fects and replica consistency maintenance algorithm may

influence performance. The derivation of a classic analyti-

cal model taking into account even a subset of these factors

can be time consuming.

Our previous work [7, 22] in this area uses either a sim-

ple reactive scheme [22] to provision database replicas to

workloads or requires extensive off-line training [7] of sys-

tem states for each representative workload mix in order to

accurately adapt on-line.

1

In this paper, we first introduce a new database replica

provisioning scheme which adapts on-line with minimal

off-line analysis. As before, the main goal is to maintain

the application query latency within a predefined Service

Level Agreement (SLA) value. We then add as a sec-

ondary goal avoiding temperature hot-spots for the clus-

ter nodes in the database server tier. Previous work on

modeling temperature profiles [16] has shown that avoiding

hot-spots by maintaining the maximum temperature of the

nodes in the cluster as low as possible translates into cost

savings for cooling. Hence, we enhance our dynamic provi-

sioning technique with temperature awareness for avoiding

hot-spots and we study the temperature effects of various

temperature-aware and temperature-unaware techniques.

The key novel feature of our database provisioning ap-

proach is on-line learning of correlations between system

states and the response time under those states. A system

state is defined as the load on the database back-end as

reflected by measured system metrics, and the configura-

tion of the database back-end, i.e., the number of database

replicas for the respective application. Intuitively, a corre-

lation is an automatically determined function that allows

us to extrapolate future behavior from previously seen sys-

tem metrics and configurations and their corresponding re-

sponse times.

Not all database system metrics are well correlated with

response time. We use minimal off-line analysis to guide

the selection of the most promising correlations that the

system should automatically determine on-line. The system

then accumulates and memorizes a sample set of recent met-

ric and database configuration points and their respective re-

sponse times that are representative of the learned correla-

tion function. We use Support Vector Machine (SVM) [10]

regression for determining the correlations between mea-

sured metrics for a range of database configurations on one

hand and response time on the other hand. SVM is a power-

ful machine learning approach which can capture non-linear

feature correlations. The correlations are determined on-

line based on the accumulated set of sample points.

The system then tracks the error of the correlation func-

tion and either adds new points or replaces existing points in

the sample set on the fly, when the measured error is beyond

an acceptable margin. In this way, the system automatically

adapts the on-line correlation function to reflect new load

and database configuration situations that it has not previ-

ously seen. The correlation function also evolves on-line in

response to dynamic changes in the application and system,

such as a workload mix shift or a change in database hard-

ware. The learned correlations form a lightweight system

model that evolves on-line and allows us to predict response

time as a function of measured system metrics and predicted

load. The model also allows us to determine the appropriate

database tier configuration necessary for a predicted level of

load. Based on this prediction, we can add database repli-

cas to an application in advance of load spikes and we can

remove a number of database replicas from the allocation of

a particular application when they are no longer necessary.

Finally, we enhance our database provisioning algorithm

with load shifting based on temperature-awareness. The

algorithm uses unloaded replicas opportunistically to im-

prove the temperature profile of the database cluster. Our

baseline provisioning algorithm adds replicas in advance of

predicted load spikes and uses conservative estimates for

removal of replicas. Hence, newly added replicas will nor-

mally not be used for some time before and after the load

spike actually happens. Our algorithm uses this time as a

window of opportunity to shift the load from the highest

temperature replica currently used to the coldest replica al-

located to the application. Spreading the load across all

machines in the application’s allocation is another simple

method to reduce the load, hence temperature of hot-spot

machines. The more conservative the allocation of ad-

ditional replicas, the more opportunities for temperature-

aware load shifting or load spread. However, the load

spread method can make a difference in per-node temper-

ature only if the per-machine load after the load spread is

significantly lower than the original. In contrast, we can

significantly lower the temperature of the highest tempera-

ture machine with only one additional replica through load

shifting.

We evaluate pro-active versus reactive provisioning

schemes using the shopping and browsing mix workloads

of the TPC-W e-commerce benchmark [24], an industry-

standard benchmark that models an online book store. We

drive the web site with a varying load function. We perform

experiments where the workload mix dynamically changes

between browsing and shopping. Finally, we instrument our

cluster with temperature monitoring and we compare the

temperature profile of temperature-aware schemes based on

load shifting and uniform load spread with the baseline

temperature-unaware provisioning scheme.

Our results are as follows:

1. By triggering adaptations early, our novel pro-active

scheme with on-line learning avoids most SLA viola-

tions under a variety of load scenarios, including sharp

load increases.

2. Our correlation tracking is shown to be robust to on-

line workload mix changes.

3. Both of our temperature-aware schemes reduce the

maximum temperature in the cluster compared to the

temperature-unaware scheme, thus avoiding hot-spots.

At the same time, the temperature-aware schemes have

similar performance to the temperature-unaware pro-

active scheme. The load shifting scheme uses fewer re-

sources than the uniform load spread technique, hence

it is preferable in constrained resource scenarios.

The rest of this paper is organized as follows. We first in-

troduce the necessary background related to the SVM learn-

ing algorithm in Section 2. We then introduce our system

architecture and give a brief overview of our dynamic repli-

cation environment in Section 3. We introduce our pro-

active approach with and without temperature awareness in

Section 4. We describe a baseline reactive provisioning ap-

proach used for comparison in the experiments in Section 5.

Section 6 describes our experimental testbed and bench-

mark. Section 7 illustrates the experimental results of our

pro-active adaptation approaches with and without temper-

ature awareness under different workload patterns and dy-

namically varying workload mixes. We compare our work

to related work in Section 8. Finally, we conclude the paper

in Section 9.

2 Background

We use Support Vector Machines (SVM) [10] as our

regression algorithm for on-line metric correlation deter-

mination. In SVM the goal is to find a smooth function

f (x) that has a small deviation (ε) from the targets yi for

all training data. In other words, errors less than ε are

tolerated while larger deviations are not acceptable. Sup-

pose we are given training data consisting of l samples,

{(X1,y1),(X2,y2), . . . ,(Xl ,yl)} where X denotes the space

of the input samples. Then, the estimated function f (X)
takes the form:

f (X) =
l

∑
i=1

αiyiK(Xi,X) (1)

Each training point Xi is associated with a variable αi
that represents the strength with which the training point is

embedded in the final function. The points which lie closest

to the hyper plane, denoting f (X), are called the support
vectors. K(Xi,X) is a kernel function which maps the input

into a high dimensional space, called feature space, where

linear support vector regression is applied. Typical kernel

functions include linear kernel, RBF kernel, sigmoid kernel,

and polynomial kernel. The training of SVMs is a convex

optimization problem solved using quadratic programming.

SVM works well for highly dimensional and non-linear

data. Unlike instance-based learning algorithms, such as k-

nearest-neighbors (KNN), SVM automatically chooses the

appropriate number of support vectors, thus avoiding the

need to store all training samples. Finally, SVM trains fast

compared to other machine learning algorithms, such as

KNN, and converges to an unique solution.

3 System Architecture

Our replicated database cluster architecture uses a set

of schedulers, one per application, interposed between the

application and the database tiers. The scheduler tier dis-

tributes incoming requests to a cluster of database replicas.

The application server tier views the scheduler as a virtual

database while the database tier views the scheduler as the

application server. Upon receiving a query from the appli-

cation server the scheduler sends the query using a scal-

able and strongly consistent read-one, write-all replication

scheme, called Conflict-Aware replication [2] to the replica

set allocated to that application. The replica set is chosen

by a resource manager that makes the replica allocation de-

cisions across the different applications.

Since database allocations to applications can vary

dynamically, each scheduler keeps track of the current

database set allocated to its application. We further distin-

guish the database set into an application’s read and write

replica sets, called read set and write set respectively. The

read set is the set of machine replicas from which an appli-

cation reads. Likewise, the write set of an application is the

set of replicas that are maintained fully up to date with the

writes of the application through our underlying replication

scheme. We load balance the read queries among the repli-

cas in the read set. For a particular application, the read set
and write set may be different. However, the read set of an

application is always a subset of its write set. The sched-

uler is also in charge of bringing a new replica up to date by

a process we call data migration during which all missing

updates are applied on that replica.

Complementing the scheduler is a resource manager that

manages resource allocations of different applications. The

schedulers keep track of average query performance met-

rics per sampling interval and communicate performance

monitoring information periodically to the resource man-

ager. The resource manager, based on its global knowl-

edge of each application’s SLA requirements and their per-

ceived performance makes database allocation decisions for

all applications. The decisions are communicated to the re-

spective application schedulers, which act accordingly by

including or excluding databases from their database read

and/or write sets for their corresponding application.

4 Temperature-Aware Proactive Provision-
ing with On-Line Learning

In the following, we first give an overview of our pro-

active replica allocation to meet performance requirements.

Then we discuss our dynamic performance model genera-

tion, load prediction and provisioning policies in more de-

tail. Finally, we introduce our temperature-aware enhance-

ments to the pro-active provisioning technique.

4.1 Overview

Our proactive approach employs SVM regression to dy-

namically generate a performance model correlating system

metrics to the average query response time. The obtained

model is used to predict the number of databases that can

execute queries without SLA violation. We combine the

model with a load prediction scheme to predict load at sev-

eral points in the future, and proactively allocate databases

in anticipation of load increase. In addition, using the model

enables the resource manager to avoid over-provisioning by

de-allocating replicas to each workload based on the pre-

dicted number of database servers it needs. Our proactive

scheme uses three modules: Tracking, Load prediction and

Provisioning. The Tracking module is responsible for learn-

ing the correlation of system states and latency. The Load

prediction module predicts the number of incoming queries,

which is further used by the Provisioning module to deter-

mine the best machine allocation for the application. The

Provisioning module is an algorithm incorporated into the

resource manager which translates the predicted number of

databases needed for each application over a sequence of fu-

ture time intervals to allocation or deallocation commands

to the scheduler. In the following subsections we describe

each module in more detail.

4.2 Tracking Module for Dynamic Performance
Model Generation

Our performance model generation is based on a novel

correlation detection scheme, Online Adaptive Tracking

(OAT), for correlating load intensity and query latency.

OAT generates a dynamic performance model of the sys-

tem online in the form of a function ypred = f (�x), where

�x = (c1, ...,cp,n) is a vector of measured system metrics

ci’s, called load features, characterizing the load on the sys-

tem, n is the number of database replicas allocated to the

application, and ypred is the predicted query latency.

The model learns the correlation function f (.) dynam-

ically and thus can adapt to changing application or envi-

ronment conditions. Having the correlation function f (.)
enables us to plan for adding or removing replicas based on

predicted values for load features. In order to reduce over-

head on the system, we preselect load features that are well

correlated to response time through off-line analysis.

In a database system, multiple factors can influence the

average query response time. We consider nine features of

our database tier as measured during a sampling interval

that reflect load characteristics as follows: Average query

throughput (QueryThput), Average number of active con-

nections (ActiveConn) used to deliver one or more queries

from the application servers as detected by the scheduler,

Rate of incoming Queries (Query) at the scheduler, Rate

of incoming Read Queries (RD), Rate of incoming Write

Queries (RW), and Lock ratio (Lock), i.e., number of locks

held versus total queries.

While discarding the least promising correlations could

theoretically be done on-line, we currently perform this fil-

tering off-line. We use two filtering methods, correlation

coefficient [21] and cross-validation [11]. Correlation coef-

ficient is a well-known statistical technique for discovering

highly correlated dimensions. We validate correlations be-

tween measured metrics and query latency through cross-

validation.

Our Online Adaptive Tracking (OAT) algorithm uses

a small set of samples of observed system metrics, their

database configurations and the resulting query latency for

obtaining the correlation function. For this purpose we use

Support Vector Machine Regression (SVM).

The OAT accumulates its sample set L adaptively. Sam-

ple set L = {[�x(i),y(i)] ∈ Rp+1 ×R, i = 1, ..., l} consists of l
pairs (�x1,y1),(�x2,y2), ...,(�xl ,yl). fL(�x) represents a function

fitted over the set L using SVM.

The sample set is formed dynamically by keeping the

best descriptive samples. A sample is descriptive when it

closely represents the relationship of y and�x for regression

at the current time. To maintain the dynamic set highly de-

scriptive, hence keep the accuracy of prediction high, we

update the sample set upon encountering a prediction error

over an acceptable threshold. Specifically, if the absolute

value of the difference of ypred = fW (�xcur) of current sys-

tem state�xcur, and the measured metric yactual is more than

a predefined threshold α , OAT picks the closest sample in

the sample set, and replaces it with a linear combination of

the old and new sample by the following formula:

(ynew,�xnew) ← µ(yclosest ,�xclosest)+(1−µ)(yactual ,�xcur)
(2)

Closeness is defined as lp − norm of difference

of xcur and x part of samples: (yclosest ,�xclosest) =
argmin(y,�x)∈L(lp−norm(�x−�xcur)) , µ is a non-negative

number between 0 and 1. The replacement of the old

sample with the new sample as shown in the equation 2

evolves the sample set so that recent changes in the relation

of �x and y are refelected in the sample set. On the other

hand, this evolution is done gradually, such that an errant

measurement cannot significantly influence the sample set.

4.3 Load Prediction Module

We use a standard linear extrapolation technique for fu-

ture load prediction based on the history of load evolution.

Studies for analysis and characterization of web workloads

[13, 3, 4] show that a standard linear extrapolation is gener-

ally sufficient for prediction.

Performance of linear predictors can be sensitive to the

prediction window. A long prediction window tolerates

transient noises (i.e., small load spikes) at the cost of a

potentially delayed reaction to sudden, but significant load

change. In contrast, a small prediction window responds to

sudden change quickly at the cost of being highly influenced

by transient noises. To overcome this issue, we use a com-

bined set of linear regressions with different window sizes

to predict the load. Multiple window sizes allow us to cap-

ture the dynamics of load better than a fixed window size.

We use the least mean square method [11] for linear regres-

sion with different window sizes, and select the result of the

predictor which has the largest correlation coefficient. This

statistic is a measure of how well a straight line describes

the data.

4.4 Provisioning Module

Once the performance model and predicted load is

known, we can decide the best combination of database

replica allocations at various time intervals in the fu-

ture. Our algorithm determines the minimum number of

databases to be allocated to an application subject to keep-

ing the predicted query response time below the SLA.

The best allocation at time t, Θt = {N(p, t)|∀p ∈ P},

where N(p, t) denotes allocation to application p at time t,
and P denotes the set of applications, is determined through

solving the following combinatorial optimization problem:

min∑∀p∈P(N(p, t)+λpsp)
w.r.t
∀p : fp(�xpred(t),N(p, t)) ≤ SLAapp + sp,sp ≥ 0

∑∀p N(p, t) ≤ M
∀p : N(p, t) ≥ 1

where M is the maximum number of replicas, �xpred(t) is

the predicted load at time t, fp(.) is the response time func-

tion for application p provided by OAT, and λp is a positive

real constant which determines the penalty of SLA violation

for application p if the demand exceeds the resources avail-

able and a violation is unavoidable. The objective function

is to i) minimize the number of replicas allocated to each

application and ii) minimize the penalty of SLA violation,

subject to three constraints. The first constraint is to keep

the average response time for each application below a pre-

defined SLA. The second constraint is that the number of

replicas allocated to each application should not exceed the

total resources available. The last constraint ensures that

each application has at least one replica in its allocation at

any time. If the number of replicas needed for all applica-

tions exceeds the number of available database servers, the

slack variables sp’s in the objective function and the first

constraint enforce the least possible SLA violation. We use

a greedy algorithm to solve the optimization problem.

The Provisioning module is responsible for instructing

the scheduler of each application when and how to add or

remove databases. This task is not trivial because of the

following reasons. The first concern is the long adaptation

delay. Adding a database replica to an application’s alloca-

tion is a time-consuming operation. The database state of

the new replica is typically stale and must be brought up-

to-date via the application of missing updates before it can

be used. In addition, the buffer cache at the replica needs to

be warm before the replica can be used effectively. An as-

sociated problem is the period of instability that occurs dur-

ing adaptations, when system metrics may not reflect typi-

cal system behavior. For example, when adding a replica,

the system metrics might show abnormal values due to the

load imbalance between the old and newly added replicas.

We have shown that a pro-active approach that disregards

the needed period of system stabilization after adaptation

induces system oscillations between rapidly adding and re-

moving replicas [7].

The provisioning module uses estimates of the adapta-

tion delay time for adding database replicas to trigger allo-

cation sufficiently in advance of predicted need. Further-

more, it uses a simple finite state machine to determine “cy-

cles”, i.e., cases where databases are added then removed

within a period of time shorter than the estimated adapta-

tion delay, including update and ramp-up time. It then fil-

ters out these reconfiguration actions of the database tier as

unnecessary. Furthermore, in order to avoid oscillation in

replica allocation, the provisioning module allows a replica

removal for the application’s allocation only when the sys-

tem is stable. For stable system states, an increase in re-

sponse time typically correlates to an increase in throughput

during the same interval. Instability is detected when vari-

ation of throughput reversely correlates with variation of

response time, e.g., decrease in throughput coincides with

increase in response time.

4.5 Temperature Aware Scheduling Enhance-
ments

We enhance our proactive provisioning technique

with temperature aware scheduling. The objective of

temperature-aware scheduling is to minimize the temper-

ature of the hottest machine within the set of machines al-

located to each application. Previous work has shown that

avoiding hot-spots in a cluster results in a temperature pro-

file conducive to cooling cost savings. Per-node tempera-

ture is generally a function of CPU utilization, but is also

dependent on the physical location of the node and how it

is exposed to air conditioning flows. For example, in our

cluster configuration, the air conditioning unit is located at

the floor level. Thus, machines at the top of a cluster rack

receive warmer inlet air than the ones closer to the floor. Fi-

nally, the CPU temperature on any given machine is not a

linear function of CPU utilization and typically reaches its

peak faster than the CPU saturation point.

Our proactive resource management allocates a number

of database servers to each application in anticipation of a

load spike and removes them with a conservative delay af-

ter the spike. Thus, before and after the load-spike actu-

ally happens, only a subset of the allocated machines are

required to meet the query latency SLA. We use this oppor-

tunity to improve the temperature profile of the cluster by

periodically shifting the read query load of hot machines

onto unloaded cool machines. During periods of stable

load, when all machines are used fully, we can also allocate

a small number of additional machines for the application

for this purpose. The technique requires that temperature

monitoring of the cluster machines is in place and the tem-

perature of each machines is periodically polled.

The CPU temperature on each node increases mainly on

account of heavyweight read query execution rather than

due to execution of write queries. The temperature-aware

algorithm keeps all replicas up-to-date by sending write

queries to all replicas allocated to that application. How-

ever, the application’s read-set is changed periodically by

excluding the hottest machine and incorporating the coolest

unused machine.

Sending read-queries to all replicas allocated to an appli-

cation is an alternative. The idea is to spread load uniformly

on all machines allocated to an application in such a way

to have lower CPU utilization for all replicas, hence lower

the maximum temperature. The all-replica scheme has the

advantage that it does not need instrumentation of the clus-

ter to measure per-node CPU temperature. However, this

scheme may need a significant number of additional ma-

chines in order to spread the load to the point where the re-

duced CPU utilization makes a difference in terms of tem-

perature reductions. Since each additional machine used

consumes energy, the temperature-aware load-shift scheme

is expected to provide similar temperature reductions at bet-

ter resource usage.

5 Baseline Reactive Provisioning Approach
Used for Comparison

We use a baseline reactive scheme [22] for compari-

son. In the reactive scheme, we add or remove a sin-

gle replica to/from an application allocation based on

two latency thresholds: a HighSLAThreshold, and a

LowSLAThreshold, respectively.

A resource manager monitors the average latency of

each application and compares it to the two given thresh-

olds. For this purpose, it uses a smoothened latency average

computed as an exponentially weighted mean of the form

WL = α ×L +(1−α)×WL, where L is the current query

latency. The larger the value of the α parameter, the more

responsive the average to the current latency. If the aver-

age latency over the past sampling interval for a particular

workload exceeds the HighSLAThreshold, hence an SLA

violation is imminent, the resource manager adds a database

to that application’s allocation. Thereafter, to account for

replica addition delay, the resource manager stops making

allocation decisions based on sampling query latency until

the completion of the replica addition process.

If the average latency is below a LowSLAThreshold,

the resource manager triggers a replica removal. The re-

moval path is conservative and involves a tentative remove

state before the replica is finally removed from an applica-

tion’s allocation. The allocation algorithm enters the ten-

tative remove state when the average latency is below the

low threshold. In the tentative remove state, a replica con-

tinues to be updated, but is not used for load balancing read

queries for that workload. This two-step process avoids sys-

tem instability by ensuring that the application is indeed in

underload.

6 Experimental Setup

To evaluate our system, we use the TPC-W e-commerce

benchmark and the same hardware for all machines in our

cluster running the client emulator, the web servers, the

schedulers and the database engines. All machines contain

Dual 3.00Ghz Intel Xeon processors with HyperThread-

ing enabled with 2GB of RAM and a 224GB hard drives.

All nodes are connected through 1Gbps Ethernet LAN. All

the machines use the Ubuntu Linux operating system. We

run the TPC-W benchmark using three popular open source

software packages: the Apache 1.3 web server [1] with PHP

4.0 [20] implementing the business logic and the MySQL

4.0 database server with InnoDB engine [17] to store the

data.

All experimental numbers are obtained running an im-

plementation of our dynamic content server on a cluster of

8 to 16 database server machines. We use a number of web

server machines sufficient for the web server stage not to be

the bottleneck. The largest number of web server machines

used for any experiment is 6. We use one scheduler and one

resource manager.

We configure the reactive provisioning algorithm with

a HighSLAThreshold of 600ms and a LowSLAThreshold of

200ms. In our proactive algorithm, we set the soft SLA

threshold to 600±100ms. The SLA threshold was cho-

sen conservatively to guarantee an end-to-end latency at the

client of at most 1 second for the TPC-W workload. We use

a latency sampling interval of 10 seconds for the scheduler.

Unless otherwise stated, for all experiments, the maximum

size of the adaptive sample set that OAT keeps is 50 sam-

ples.

6.1 TPC-W E-Commerce Benchmark

The TPC-W benchmark from the Transaction Processing

Council [24] is a transactional web benchmark designed for

evaluating e-commerce systems. Several interactions are

used to simulate the activity of a retail store such as Ama-
zon.com. The database size is determined by the number of

items in the inventory and the size of the customer popula-

tion. We use 100K items and 2.8 million customers which

results in a database of about 4GB.

The inventory images, totaling 1.8GB, are resident on

the web server. We implemented the 14 different interac-

tions specified in the TPC-W benchmark specification. The

complexity of the interactions varies widely, with interac-

tions taking between 20 ms and 1 second on an unloaded

machine. Read-only interactions consist mostly of complex

read queries in auto-commit mode. These queries are up

to 30 times more heavyweight than read-write transactions.

We use the TPC-W shopping and browsing workload mixes

with 20% and 5% writes, respectively.

6.2 Client Emulator

To induce load on the system, we have implemented a

session emulator for the TPC-W benchmark. For each cus-

tomer session, the client emulator opens a persistent HTTP

connection to the web server and closes it at the end of the

session. Each emulated client waits for a certain think time

before initiating the next interaction. The next interaction

is determined by a state transition matrix that specifies the

probability of going from one interaction to another. The

session time and think time are generated from a random

distribution with a given mean. For each experiment, we

use a load function according to which we vary the number

of clients over time. However, the number of active clients

at any given point in time may be different from the actual

load function value at that time, due to the random distribu-

tion of per-client think time and session length. For ease of

representing load functions, in our experiments, we plot the

input load function normalized to a baseline load.

6.3 Temperature Monitoring

We use the embedded Baseboard Management Con-

troller (BMC) using the Intelligent Platform Management

Interface (IPMI) interface. The BMC monitors many hard-

ware components such as the CPU, the fans, and the moth-

erboard. In addition, the BMC logs server fault events, alert

administrators of server faults, and enables basic remote op-

erations. We use the ipmitool1 to access the BMC and

record the temperature of the CPUs. Every minute, we

poll the BMC sensors and record the results in a MySQL

database.

1http://ipmitool.sourceforge.net/

0 20 40 60 80 100 120
0

0.6

1

1.5

2

Average Number of Active Connections

R
es

po
ns

e
T

im
e

(s
ec

on
d) tpcw−shopping

tpcw−browsing
 OAT−function
SLA

Figure 2. Correlation of number of active con-
nections and response time

7 Experimental Results

In this section, we first show preliminary off-line exper-

iments for load feature selection. Next, we show the bene-

fit of our proactive provisioning over the reactive approach.

Then, we show that our proactive provisioning scheme with

on-line learning can adapt quickly to a change in workload

mix. Finally, we show that our proactive algorithm aug-

mented with temperature awareness allows us to decrease

the maximum temperature in the cluster while still meeting

the SLA.

7.1 Preliminary Experiments

As shown in Table 1, the average number of active con-
nections has a strong correlation with the average query
response time. We also verified this observation through

cross-validation by running OAT with each of the features

alone, and some combinations of them. Figure 2 shows a

set of sample points and the correlation between the aver-

age number of active connections and query response time

for one database server. We can see that the average number

of active connections has a close to linear correlation with

the average query response time when the response time is

less than the SLA. As the response time increases further,

the correlation becomes non-linear. We select the average

number of active connections as the load feature for corre-

lation tracking purposes.

7.2 Proactive versus Reactive Provisioning

In this section, we compare our proactive provisioning

scheme with a baseline reactive scheme. In this experiment,

we test our system with the TPC-W browsing mix and a

maximum of 600 clients for 25 minutes. As shown in Fig-

ure 3(a), we use a varied load function with patterns rang-

ing from small steps (between 9-14 minute marks) to sharp

drops (at the 20 minute mark) and sudden spikes (at the 14

minute mark). Figure 3(b) shows the response time of the

Table 1. Correlation Coefficients for Various Metrics and Query Latency
METRICS Latency ActiveConn QueryThput Query RD RW Lock

Latency 1.0000 0.9012 0.4335 0.4290 0.4419 0.3630 0.1943

ActiveConn 0.9012 1.0000 0.7163 0.7170 0.7247 0.6434 0.4115

QueryThput 0.4335 0.7163 1.0000 0.9993 0.9919 0.9466 0.6546

Query 0.4290 0.7170 0.9993 1.0000 0.9932 0.9456 0.6557

RD 0.4419 0.7247 0.9919 0.9932 1.0000 0.9016 0.5970

RW 0.3630 0.6434 0.9466 0.9456 0.9016 1.0000 0.7467

Lock 0.1943 0.4115 0.6546 0.6557 0.5970 0.7467 1.0000

reactive and proactive provisioning schemes. Figure 3(c)

and Figure 3(d) show the number of replicas allocated by

reactive and proactive provisioning algorithms respectively.

The first 7 minute interval of the experiment is designed to

allow the OAT to observe system states with different num-

bers of replicas in the database configuration and train itself.

During this time, the algorithm falls back on the reactive ap-

proach whenever the SLA is violated. As we can see from

the associated latency graph, we register significant SLA vi-

olations during this initial part. The subsequent 14 minutes

of the experiment measure the effectiveness of the proactive

scheme based on on-line learning compared to the reactive

provisioning approach.

The figures show that the proactive scheme handles the

load spikes well, meeting the SLA within the margin of er-

ror for the tracking algorithm and without overprovisioning

replicas. In contrast, the reactive scheme registers substan-

tial SLA violations during load spikes, and it allocates more

replicas as the load ramps. As we can see, the proactive

scheme is more precise in terms of replica allocation than

the reactive scheme, by allocating 4 replicas and keeping the

SLA violations within the (10%) allowed threshold bound

as compared to 7 replicas allocated by the reactive scheme

to handle the same load spike.

7.3 Adapting to Change of Workload Mix

We show the ability of OAT to accurately predict the

average response time by adapting on-line to a change in

the workload mix. Our system is tested with a sinusoid

workload pattern with interleaved shopping and browsing

workload mixes as shown in Figure 4(a). Our experiment

lasts for 90 minutes. We vary the load from 1 to 400 clients

for the browsing mix and between 1 and 600 clients for the

shopping mix. Figure 4(c) shows that OAT can adapt well

dynamically to the change of workload mix.

Figure 4(c) shows the response time. As before, in the

early stages (first 10 minutes) of the experiment, the OAT

exhibits many SLA violations while learning the correla-

tion function. During this period, the OAT is collecting the

sample set and modifying the sample set for a workload mix

change. After two iterations of each mix, we see that OAT

can allocate replicas in advance of need to avoid SLA vio-

lation regardless of the workload mix. Overall, during this

experiment, the average absolute error for OAT prediction

of query latency based on the correlation function was 37

ms. Moreover, the query latency was below the SLA for

96% of the time intervals during the whole experiment.

7.4 Evaluation of Temperature Aware Scheduling

In this section we compare our temperature-aware

scheduling schemes, load shifting and uniform load spread,

with the proactive scheme without temperature awareness.

We conduct two experiments.

In the first scenario, shown in Figure 5, we compare

the maximum temperature registered in the cluster for all

schemes at the same resource usage. To obtain the same re-

source usage for all schemes (in this case 7 machines in the

read set of the application and 11 machines in the write set),

we disable replica removal after a load spike and perform

the different scheduling algorithms on the same number of

replicas. This scenario can be considered representative of

a data center in light load, where no other applications cur-

rently compete for resources.

Figure 5(a) shows the maximum temperature of the

11 replicas during this experiment. The all-replica load

spread scheme has the best temperature profile followed

by load shifting temperature-aware scheduling, while the

temperature-unaware scheme has the highest temperature.

All schemes have almost ideal SLA compliance in this case,

with very low query latency as shown in Figure 5(b).

In the second scenario, we compare the three schemes

with respect to all our objectives: meeting the SLA, using

resources efficiently and lowering the maximum tempera-

ture across the cluster in a resource constrained scenario.

In this experiment we induce a flat load function with

500 emulated clients running the TPC-W browsing mix.

The scheduler is constrained to use only 7 replicas with

5 of them in the read set of the application. As shown

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20 22

Time (minute)

N
um

be
r

of
 C

lie
nt

s

(a) Load Function

0
0.5

1
1.5

2
2.5

3
3.5

0 3 5 8 10 13 15 18 20 23

Time (minute)

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

)

Reactive Proactive SLA SLA-Threshold

(b) Average latency

0

1

2

3

4

5

6

7

8

0 4 7 10 14 17 20 24

Time (minute)

A
llo

ca
tio

n

Read set Write set

(c) Replica Allocation (Reactive)

0

1

2

3

4

5

6

7

8

0 4 7 10 14 17 20 24

Time (minute)

A
llo

ca
ti

o
n

Read set Write set

(d) Replica Allocation (Proactive)

Figure 3. Comparison of the Proactive and Reactive provisioning schemes

0

200

400

600

800

0 10 20 30 40 50 60 70
Time (minute)

N
u

m
b

er
 o

f
C

lie
n

ts

Shopping Browsing

(a) Load Function

0

2

4

6

8

10

12

0 7 14 20 27 34 40 47 54 60 67 74

Time (minute)

A
llo

ca
ti

o
n

Read Set Write Set

(b) Replica Allocation

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

Time (minute)

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

)

Response Time SLA

(c) Average Latency

Figure 4. Adapting to Changes in Workload Mix

in Figure 6(b), the latency for all the three schemes is

higher than before. The temperature profile depicted in

Figure 6(a) shows that the all-replica scheme has the worst

(highest) temperature while the temperature-aware schedul-

ing and the baseline temperature-unaware scheme result in

the best and second-best temperature profiles respectively.

Unlike in the previous scenario, the CPU utilization is high

and increases the CPU temperature for all machines. The

high temperature in the all-replica load spread scheme is

due to allocating significant load to machines on the top

33

38

43

48

53

0 7 14 20 27 34 40 47 54 60 67 74

Time (minute)

T
em

p
er

at
u

re

Temperature-aware Temperature-unaware
All-replica

(a) Temperature

0

0.2

0.4

0.6

0.8

1

0 8 15 23 30 38 45 53 60 68

Time (minute)

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

)

Temperature-aware Temperature-unaware
All-replica SLA

(b) Average Latency

Figure 5. Temperature Profile for Lightly Loaded Cluster

34

39

44

49

54

0 4 9 13 17 21 25 29
Time (minute)

T
em

p
er

at
u

re

Temperature- aware All-replica
Temperature-unaware

(a) Temperature

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

5 9 13 17 22 26 30
Time (minute)

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

)

Temperature-aware All-replica
SLA Temperature-unaware

(b) Average Latency

Figure 6. Temperature Profile for Constrained Number of Replicas

of the cluster rack, which receive warmer inlet air, hence

experience sharper temperature increases with load. Indis-

criminately spreading load on all machines results in hot

spots on these machines. This experiment shows that for

constrained resource cases, temperature-aware load-shifting

achieves better temperature profile while maintaining SLA

requirements.

8 Related Work

In this paper, we investigate autonomic resource provi-

sioning based on on-line learning, pursuing three orthog-

onal objectives: meeting a performance SLA, optimizing

resource allocation, and improving the temperature profile

in a cluster of database servers. Related work in the area

of database provisioning based on learning techniques in-

cludes our previous KNN-based provisioning of database

replicas[7]. This previous scheme requires extensive off-

line training [7] of system states for each representative

workload mix in order to build an accurate performance

model. A similar table-driven provisioning approach [25]

stores response time values from off-line experiments with

different workload density and different numbers of servers.

A simple interpolation is used to obtain missing values in

the table. Just like our previous KNN-based technique, this

approach needs a large amount of data in order to be able to

interpolate accurately when the workload mix changes.

Other schemes based on analytical models [5, 26, 18]

have also demonstrated good accuracy in simulation, or ex-

perimentally for provisioning state-less servers e.g., web

servers. The general problem associated with these ap-

proaches is that the analytical model may be expensive to

build for complex systems and workloads such as those of

database servers and can become inaccurate for unforeseen

changes in environment or workload mix.

Cohen et al. [8] and Zhang et al. [28] use a similar ap-

proach for estimating performance models by means of sta-

tistical learning. They use tree-augmented Bayesian net-

works (TAN) to discover correlations between system met-

rics and service level objectives (SLO). Through training,

the TAN discovers the subset of system metrics that lead to

SLO violations. While this approach predicts violations and

compliances with good accuracy, it does not provide any in-

formation on how to adapt to avoid SLO violations. It also

requires extensive off-line training. In contrast, our provi-

sioning scheme determines the appropriate database config-

uration based on a dynamic performance model.

Our temperature-aware enhancements for the provision-

ing scheme draw on previous work describing simulations

based on thermodynamic concepts [27]. They show that IT

level provisioning can significantly improve the way heat is

generated and delivered to cluster room air conditioning. In

our case, replica consistency considerations prevent us from

using arbitrary machines for achieving generic temperature

related objectives. In the same way, related work [6, 19]

in the area of heat management by shifting load differs

from ours in that the proposed solutions are not specific to

database clusters. Furthermore, our work presents our expe-

rience with a prototype implementation deployed on a live

cluster environment instead of simulations.

9 Conclusions

In this paper, we propose a novel autonomic provisioning

scheme for the database back-end of dynamic content web

servers. The novel aspects of our proactive provisioning

scheme are: i) building a lightweight performance model

on-line by tracking the correlation between selected system

metrics, the database configuration and the resulting query

latency, ii) allocating database replicas in advance of need

based on the dynamic performance model and load predic-

tions, and iii) shifting the load from hot-spot nodes to newly

allocated low-temperature nodes.

Our provisioning scheme uses on-line learning and

adapts its model to workload mix and environment changes.

Compared to instance-based learning schemes such as K-

Nearest-Neighbors or tree-based classifiers, which need to

maintain a large set of samples, our method based on Sup-

port Vector Machines exhibits high extrapolation capabili-

ties based on a small sample set.

We show that a temperature-aware provisioning scheme

with load shifting maintains the query latency under the

service level agreement, while having better resource us-

age compared to a uniform load spread scheme which uses

all machines available. At the same time, this provisioning

scheme reduces the temperature of the node with the highest

temperature, thus affording cooling cost savings compared

to a provisioning scheme that is not temperature aware.

References

[1] The Apache Software Foundation. http://www.apache.org/.
[2] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed

versioning: Consistent replication for scaling back-end

databases of dynamic content web sites. In M. Endler and

D. C. Schmidt, editors, Middleware, volume 2672 of Lecture
Notes in Computer Science, pages 282–304. Springer, 2003.

[3] M. F. Arlitt and C. L. Williamson. Internet web servers:

workload characterization and performance implications.

IEEE/ACM Trans. Netw., 5(5):631–645, 1997.
[4] Y. Baryshnikov, E. Coffman, G. Pierre, D. Rubenstein,

M. Squillante, and T. Yimwadsana. Predictability of web-

server traffic congestion. In WCW ’05: Proceedings of the
10th International Workshop on Web Content Caching and
Distribution (WCW’05), pages 97–103, Washington, DC,

USA, 2005. IEEE Computer Society.
[5] M. N. Bennani and D. A. Menascé. Resource allocation for

autonomic data centers using analytic performance models.

In ICAC, pages 229–240. IEEE Computer Society, 2005.
[6] D. J. Bradley, R. E. Harper, and S. W. Hunter. Workload-

based power management for parallel computer systems.

IBM J. Res. Dev., 47(5-6):703–718, 2003.
[7] J. Chen, G. Soundararajan, and C. Amza. Autonomic pro-

visioning of backend databases in dynamic content web

servers. In Proceedings of the Third International Confer-
ence on Autonomic Computing (ICAC 2006), pages 123–

133, 2006.
[8] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and

J. Symons. Correlating instrumentation data to system

states: A building block for automated diagnosis and con-

trol. In OSDI, pages 231–244, 2004.
[9] K. Coleman, J. Norris, G. Candea, and A. Fox. Oncall: De-

feating spikes with a free-market server cluster. In In Pro-
ceedings of the 1st International Conference on Autonomic
Computing (ICAC), 2004.

[10] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola,

and V. Vapnik. Support vector regression machines. In

M. Mozer, M. I. Jordan, and T. Petsche, editors, NIPS, pages

155–161. MIT Press, 1996.
[11] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements

of Statistical Learning. Springer, August 2001.
[12] IBM Corporation. Automated provisioning of re-

sources for data center environments. http://www-

306.ibm.com/software/tivoli/solutions/provisioning/, 2003.
[13] A. K. Iyengar, M. S. Squillante, and L. Zhang. Analysis

and characterization of large-scale web server access pat-

terns and performance. World Wide Web, 2(1-2):85–100,

1999.
[14] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder,

M. Sviridenko, and A. N. Tantawi. Dynamic placement for

clustered web applications. In L. Carr, D. D. Roure, A. Iyen-

gar, C. A. Goble, and M. Dahlin, editors, WWW, pages 595–

604. ACM, 2006.

[15] D. A. Menascé, D. Barbará, and R. Dodge. Preserving qos of

e-commerce sites through self-tuning: a performance model

approach. In ACM Conference on Electronic Commerce,

pages 224–234. ACM, 2001.
[16] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making

scheduling “cool”: Temperature-aware resource assignment

in data centers. In USENIX Annual Technical Conference,

pages 61–75, 2005.
[17] MySQL. http://www.mysql.com.
[18] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous

resource monitoring for self-predicting dbms. In MASCOTS
’05: Proceedings of the 13th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 239–248, Washing-

ton, DC, USA, 2005. IEEE Computer Society.
[19] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and

implementation of zap: a system for migrating computing

environments. SIGOPS Oper. Syst. Rev., 36(SI):361–376,

2002.
[20] PHP Hypertext Preprocessor. http://www.php.net.
[21] S. M. Ross. Introduction to Probability and Statistics for

Engineers and Scientists. John Wiley & Sons, Inc., 1987.
[22] G. Soundararajan, C. Amza, and A. Goel. Database repli-

cation policies for dynamic content applications. In In Pro-
ceedings of the First ACM SIGOPS EuroSys, 2006.

[23] G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart. Utility-

function-driven resource allocation in autonomic systems .

In ICAC, pages 70–77, 2005.
[24] Transaction Processing Council. http://www.tpc.org/.
[25] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility

functions in autonomic systems. In In Proceedings of the 1st
International Conference on Autonomic Computing (ICAC),
2004.

[26] M. Woodside, T. Zheng, and M. Litoiu. Service system re-

source management based on a tracked layered performance

model. In Proceedings of the Third International Confer-
ence on Autonomic Computing (ICAC 2006), pages 123–

133, 2006.
[27] P. R. YJ. Moore, J. Chase and R. Sharma. Making schedul-

ing cool: Temperature-aware resource assignment in data

centers. In Proceedings of USENIX, 2005.
[28] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.

Ensembles of models for automated diagnosis of system per-

formance problems. In DSN, pages 644–653. IEEE Com-

puter Society, 2005.

