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Abstract— We introduce Ensemble, a runtime framework and
associated tools for building query latency models on-the-fly.
These dynamic performance models can be used to support
complex, highly dimensional resource allocation, and/or what-
if performance inquiry in modern database environments, such
as data centers and Clouds. Ensemble combines simple, partially
specified, lower-dimensionality models to provide good initial ap-
proximations for higher dimensionality, end-to-end query latency
models.

We perform an experimental evaluation on industry-standard
applications running on a multi-tier dynamic content server.
We show that the Ensemble on-the-fly modeling framework
provides accurate, fast and flexible performance modelling by
using partial, lower dimensionality models to approximate end-
to-end query latency models.

I. INTRODUCTION

Large datacenters, e.g., Amazon Relational Database Ser-
vice (RDS) datacenter [1], Google App Engine datacenter [2],
are highly dynamic environments, co-hosting several appli-
cations sharing resources in a multi-tier server environment.
Uncontrolled resource sharing between co-hosted applications
often results in performance degradation problems, thus creat-
ing violations of service level agreements (SLAs) for service
providers. Therefore, per-application performance modeling
for on the fly adjustment of resource allocation to match per-
application SLAs has recently become promising [3], [4], [5],
[6], [7].

In this paper, we introduce Ensemble, a novel perfor-
mance modeling framework for dynamic resource allocation
or capacity planning in complex, service-hosting datacenter
environments.

A performance model is a mathematical function that
calculates an estimate of the application performance for a
range of resource configurations. For example, Fig. 1 shows
a performance model as a 3D surface for the online auctions
application RUBiS. The model provides an estimate of the
average memory access latency (i.e. average page access
latency measured at the database buffer pool) of a MySQL
database engine running RUBiS, for all possible memory
quotas in a two-level memory hierarchy, consisting of buffer

pool and storage. Similarly, the average query latency of an
application varies on a 5D hyperplane, as a function of its
resource quotas for CPU, buffer pool, storage cache, and
storage bandwidth of that application.

Fig. 1. RUBiS latency surface.

Automatic performance model building iterates through two
steps: (i) gathering experimental samples, and (ii) modeling
computation. Gathering experimental samples means actuating
the experimental system into a given resource configuration,
running a specific application workload on the live system (or
equivalent) and measuring the application latency. Modeling
computation involves mathematical interpolation for building
the model on existing sampling data. While modeling com-
putation is typically on the order of fractions of seconds,
experimental sampling may take months for mapping out the
entire resource configuration space of an application with suf-
ficient statistical accuracy. This is due to dynamic effects, for
instance, cache warm-up time, which make reliable actuation
and sampling expensive even for a single configuration point.

For example, for N modeled resources, and M increments
of sampling for each resource, an application surface model
would be an N + 1-dimensional hyperplane with O(MN )
sample points. For our RUBiS example in Fig. 1, due to the
cache warmup effect, experimental sampling takes around 15
minutes of measurements at each of the 1024 (322) points of
the surface. The total sampling takes approximately 11 days.
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In an enterprise environment, where 64GB storage caches
are common, if we set sampling increments in 1GB units,
total sampling would take 2 months. It follows that extensive
experimental sampling and building fully automated, black-
box performance models based on experimental sampling on
a live system is too time consuming.

At the other end of the spectrum is using analytical models
that rely on sysadmin or analyst’s semantic knowledge of the
system and application [5], [7], [8]. However, these analytical
models are precise only for restricted parts of the system,
specific application workload mix or resource configurations.
They are brittle to dynamic changes and require too much
domain expertise.

In this paper, we propose to leverage automated black-box
long-term learning of the system itself, coupled with admin-
istrator semantic awareness and expertise, wherever available
to build an ensemble/mixture of models. The overall model
thus built covers the end-to-end 5D query latency model
with a satisfactory accuracy-time modeling trade-off in most
situations.

We observe that calculating a number of potential models,
or fitting known models over the collected sampling data is
relatively fast compared to actuating and sampling. Moreover,
disk operational laws and cache operational laws (e.g., cache
LRU replacement) and disk access patterns [9] (e.g., sequen-
tial) are sometimes known beforehand, and can be taken into
account to guide performance modelling.

Ensemble, our highly flexible performance modeling frame-
work, uses these observations to provide lightweight sam-
pling and modeling on the fly as well as accumulating a
versioned model repository over time. At any given point in
time, Ensemble provides performance predictions within the
application’s current operating zone, i.e., workload mix and
resource availability. Ensemble can also automatically find
configuration ranges where a model template fits its sampling
data; it further automatically ranks models by accuracy per
configuration region and selects the best model per region.
In new situations, and wherever model templates are not
available, Ensemble gathers experimental samples and uses
black-box statistical regression to derive models.

II. ENSEMBLE FRAMEWORK

Long-term resource over-provisioning of resources in large
data centers for all possible combinations of peak incidental
loads is unacceptable in a dynamic environment, due to large
cooling and power costs. Therefore, performance modeling
of applications is desirable for automating resource allocation
and what-if capacity planning. We further make the following
assumptions about the application, environment, and system
API that guide our modelling process.

A. Assumptions

We assume that a QoS requirement or SLA is provided, per
application, as the average query latency, and small variations
around this average are acceptable.

1) Stable Patterns for Application and Environment: The
hardware and software environment and workload mix for
each application deployment are assumed to exhibit stable
periods when they do not change significantly. We further
assume that each application’s deployment exhibits recogniz-
able, repeatable patterns of stable periods over time. Input
load for any given application may fluctuate during stable
periods. However, given the same query mix, and a sufficient
resource allocation, the average query latency per application
is assumed to be relatively stable during a stable period.

2) Mechanisms for Enforcing Resource Isolation: Each
application is allocated a guaranteed resource quota, per re-
source, for the entire duration of its execution within a stable
period. The application is assumed to execute within a soft-
ware environment that provides applications with container-
based or quanta-based mechanisms for resource isolation at all
resources modelled i.e., the CPU, buffer pool, storage cache
and storage bandwidth. Specifically, resource controllers are in
place to ensure that concurrently running applications cannot
interfere with a given application’s full use of their resource
quotas. For this purpose, we are reusing mechanisms we previ-
ously implemented for dynamic partitioning of memory pools
in the memory hierarchy and quanta-based I/O scheduling of
the storage bandwidth [7].

3) Analyst Guidance: We assume that the sysadmin or
analyst may know relatively simple models with good enough
accuracy for parts of the configuration space, or for modeling
the operation of certain resources in isolation. For example,
the analyst may know that when the application is disk bound,
the relation “the query latency varies on an inverse exponential
with the disk bandwidth quanta” applies. This boils down
to using a lower dimensionality model in one region of the
resource space, instead of the 5D model. A similar function
may apply for the cases where the application is CPU bound.
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Fig. 2. An Example of Ensemble Learning.

Fig. 2 shows a simple interactive scenario visually for
modeling a workload with Ensemble (although visual display
would not be possible for higher dimensionality models).

The sysadmin doesn’t know how to model the whole
configuration space. However, he or she may suspect that a
simple disk model will work in some part of the configuration
space, where the I/O is intensive. We refer the area where a
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1 TEMPLATE <templateName>
2 RELATION <relationName> {<metricSet>}
3 CONTEXT {<contextSet>}

Listing 1. Syntax of Model Template

model is valid as the operating region of this model.
Our framework is flexible enough to allow the sysadmin to

express model templates, e.g., the belief that a simple Disk-
bound and/or CPU-bound model may fit parts of a configura-
tion space shown in the figure and also the operating region(s)
of these models, if known. It is important to note that either
Disk-bound or CPU-bound may have lower dimensionality
than that of the configuration space of the overall model.
Alternatively, the sysadmin can ask the Ensemble runtime
system to automatically find the operation region for any
model she provides for validation. Experimental sampling is
still required for fitting given model templates to the data and
for building black box models from scratch for the regions of
the resource configuration space where no model is suspected
or known. However, specifying suspected models, or reusing
older models that may fit parts of the configuration space is
expected to speed up total modeling time, as well as to allow
interactive model query and validation.

B. Model Templates

Ensemble uses model templates, wherever available, from
a user/analyst, or a repository of models derived previously
for other applications. Model templates express analyst beliefs
about analytical performance models for the Ensemble to fit
or validate with experimental data.

The syntax of a model template is shown in Listing 1
(keywords are underlined).

Each template is identified by a unique name; this allows
the template to be saved in a database and later retrieved for
future inquiry. The relation defines a mathematical function
describing the relationship between metrics; it is identified by a
relation name and it may be used in several models. A relation
could be a suspected mathematical correlation to be validated,
curve fitted, or otherwise refined. The context is a list of con-
ditions on a set of configurations, in which the analyst believes
her template holds. Any parameter, resource configuration, or
property that the given relation in the template is sensitive to
can be specified as an associated (expected) context for that
relation. Within the template context, configuration ranges for
particular resources can be specified, or left as empty. Within
any template, Chorus can refer standard math relations, such
as, linear, exponential, inverse, machine learning algorithms,
as well as non-standard models, that are provided by analysts.

A model template thus expresses incomplete domain knowl-
edge with or without specifying a concrete context. It is the
task of the Ensemble runtime to validate and calibrate the
associated model, and to find out the context where that model
holds.

We list the analytical model templates we will use in this
paper in the following.

1 TEMPLATE CPU_Bound
2 RELATION CPU_Inverse_Exponential(x,y) {
3 x.name=‘cpu_quota’ and
4 y.name=‘query_latency’
5 }
6 CONTEXT (a) {
7 a.name=‘memory_size’ and a.value=‘*’
8 }

Listing 2. CPU Bound Model Template

C. Basic CPU-Bound Query Latency Model (A-CPU)

The CPU-Bound query model is designed to approximate
the region of the configuration space where a workload is CPU
bound. The model predicts the query latency as:

Rquery(ρp, ρc, ρs, ρd) =
R query(1)

ρp
(1)

where Rquery(1) is the baseline query latency for an
application, when all resources are fully allocated to that ap-
plication, and ρp is the cpu quota allocated to the application.

Corresponding to this inverse exponential mathematical re-
lation, a performance model, called A-CPU is presented to the
system by the analyst with the syntax shown in Listing 2. The
Ensemble run-time learns the model i.e., gathers experimental
samples, validates, curve-fits, finds the configuration settings
where the relation applies, if any, and computes confidence
scores and error rates.

The relation is the Inverse Exponential relation presented
previously. This model is declared sensitive to only one
parameter: the memory size allocated to the application; the
configuration range for which this model may apply is left
unknown. Hence, the context in this model is left empty as “*”.
A more precise context may specify the minimum total amount
of buffer pool and storage cache for which the application
becomes CPU bound.

D. Basic Disk-Bound Query Latency Model (A-Disk)

The analyst is aware that our storage server uses a quanta
based scheduler to enforce allocation to the disk bandwidth
among multiple applications. Under this assumption, a larger
fraction of the disk bandwidth allocated usually leads to lower
query latencies. Hence, the analyst provides a model template
based on inverse exponential, as shown in Listing 3. The
inverse exponential is a mathematical relation similar to the
one used for defining the A-CPU model, as follows:

Ld =
Ld(ρd=1)

ρd
(2)

where Ld(ρd=1) is the baseline disk latency for an applica-
tion, when the whole bandwidth is allocated to that application.
This formula is intuitive. For example, if the entire disk was
given to the application, i.e., ρd = 1, then the latency is equal
to the underlying disk access latency. On the other hand, if
the application is given a small quanta, i.e, ρd ≈ 0, then the
storage access latency is very high (approaches ∞).

This model is declared sensitive only to two parameters: the
total effective memory size allocated to the application, and
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1 TEMPLATE DISK
2 RELATION Inverse_Exponential(x,y) {
3 x.name=‘disk_quota’ and
4 y.name=‘query_latency’
5 }
6 CONTEXT (a) {
7 a.name=‘memory_size’ and a.value=‘*’
8 b.name=‘disk_quota’ and b.value > 0.1
9 }

Listing 3. DISK Model Template

the disk quota allocated to the application. The configurations
under which the model is considered effective exclude those
with very low disk quantas. This is because the analyst knows
that, in our storage server, an application’s latency shows
unacceptably large variation whenever the disk quanta given
to the application is less than 32ms (about 0.1 fraction of
the total disk quanta). This is due to insufficient disk access
time for the I/O burst, which makes the context switch penalty
between applications i.e., the disk seek penalty when switching
to servicing the data of a different application, significantly
disruptive. The memory size range for which this model may
apply is left unknown, as “*”.

E. Memory-Bound Query Latency Model (A-STOR-Q)

A-STOR-Q is an analytical model for the query latency
designed for storage intensive workloads. Just like A-Disk,
A-STOR-Q ignores the CPU time. However, A-STOR-Q is
more sophisticated than A-Disk, because it models the access
time to the memory hierarchy in more detail. In this model,
our analyst leverages the query selectivity, which we obtain
using our own statistics of the number of page accesses (i.e.
Nacc) to the database buffer pool.

The query latency model is:

Lquery(ρp, ρc, ρs, ρd) = Nacc ∗ Lmem(ρc, ρs, ρd) (3)

where ρp, ρc, ρs, ρd is the CPU, buffer pool, storage cache and
disk bandwidth quota allocated to the application; Nacc is the
average number of page accesses made for each query in the
workload; and Lmem is the average memory access latency
for each page as derived in Equation 4, which we introduce
below. This formula allows the analyst to express the miss
rate relationship between the two caches as a function of the
cache replacement policy, and is validated by the Ensemble
run-time, just like any standard relation.

Lmem(ρc, ρs, ρd) = Mc(ρc)Hs(ρc, ρs)Lnet︸ ︷︷ ︸
I/Os satisfied by the storage cache

(4)

+ Mc(ρc)Ms(ρc, ρs)Ld(ρd)︸ ︷︷ ︸
I/Os satisfied by the disk

where ρd is the allocated fraction of disk bandwidth (i.e. disk
bandwidth quanta); and ρc, ρs are the buffer pool, and storage
cache quota allocated to the application.

The miss/hit ratio at the storage cache, i.e.,Ms(ρc, ρs) and
Hs(ρc, ρs), is a function of both the quota at the first level
cache (ρc), and the quota at the second level cache (ρs), while

the miss-ratio of the buffer pool, Mc(ρc), is only a function
of ρc.

Our key idea is to approximate the latency model of a cache
hierarchy with the simpler model of a single level of cache,
in order to obtain a close performance estimation, at much
higher speed. Towards this goal, we use the experimental
observation that the network latency is negligible compared
to the disk access latency. This affords us the simplification
that the contribution of a cache hit in any level of cache to
overall application performance is roughly the same. We use
the most commonly deployed or proposed cache replacement
policy, LRU, in deriving our cache performance model.

In a cache hierarchy using the LRU replacement policy at
all levels, if an application is given a certain cache quota qi
at a level of cache i, any cache quotas qj given at any lower
level of cache j, with qj < qi will be mostly wasteful. This is
because of the cache hierarchy inclusiveness property, where
any cache miss from qi will result in bringing the needed block
into all lower levels of the cache hierarchy, before providing
the requested block to cache i.

Hence, in an LRU cache hierarchy, only the maximum
size quota given at any level of cache really matters for
approximating the hit/miss ratio; therefore, we approximate
the miss ratio of a two level cache, consisting of a buffer pool
(c) and a storage cache (s) by the following formula:

M(ρc, ρs) ≈ M(max[ρc, ρs]) (5)

F. General Purpose Model Templates

1) Gray-box Inverse Exponential Model Template (G-INV):
Inverse Exponential is a pre-defined mathematical relationship
in Ensemble, defined as follows:

ŷα,β(x) =
α

xβ
(6)

In this formula, the parameters α and β are to be curve-
fitted by Ensemble. Both the A-CPU and the A-Disk analytical
models we decribed above are special forms of G-INV models.

2) Gray-box Region Model Template (G-RGN): The analyst
believes that while the performance models of applications are
complex in general, they are simple within a small range of
configurations, i.e., constant, linear, or polynomial. Hence, we
can model the performance using simple curve fitting within
a region (i.e., a subset of configurations). While any function
can be provided, for this model template, the analyst specifies
the use of the average function for Ensemble to fit the samples
in each region.

3) Black-box SVM Regression Model Template (B-SVM):
Ensemble uses a black-box model template to cover all sce-
narios where no model is known, or to refine areas where
other models do not provide sufficient accuracy. In this
case study, Ensemble uses a well-known machine learning
algorithm: Support Vector Machine regression [10] (B-SVM)
as its default, fully automated, black-box model template.
SVM estimates the performance for configuration settings we
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have not actuated, through interpolation between a given set
of sample points. SVM is shown to scale well for highly-
dimensional, non-linear data. Radial basis functions (G-RBFs)
are used as kernel functions.

4) Black-box Constant Model Template (B-CNST): This is
a very simple model which uses a simple average relation
which returns the average value of all training samples to
predict performance. The predicted latencies are the same for
all configurations. In contrast, G-RGN uses average function
for each region, and hence the prediction values are usually
different in different regions.

III. ENSEMBLE DESIGN

We assume that a number of model templates have been
provided for Ensemble to learn/validate within a configuration
space C. We focus on describing how Ensemble trains and
ranks performance models for C. For the purposes of training
and ranking models per regions of applicability, Ensemble
automatically divides the whole configuration space into multi-
ple regions, controlled by a configurable parameter D, which
defines the number of divisions along each dimension. This
results in dividing the configuration space into DN regions,
where N is the number of resource dimensions. Based on the
contexts defined in the model templates, each model template
to be used will apply only to a part of the total regions in the
total configuration space C.

Algorithm 1 shows the learning process in Ensemble. The
outcome is an overall model for C called an ensemble model.
The algorithm uses performance samples gathered at runtime
to refine each approximate model, and it ranks the models
by accuracy, per region, within C. Our samples are gathered
on the live system by actuation into the desired configuration
and taking several measurements of the application’s average
query latency.

Ensemble gathers a training sample set for C; the samples
are gathered using user specified sampling methods (e.g.
random sampling, greedy sampling, etc.) from the configura-
tion space. The modeling refinement in our algorithm occurs
iteratively, by adding new samples to the training set, until a
stop condition is met.

In each iteration, we use the samples in the training set to
i) build or refine, and rank the template-based approximate
models and ii) evaluate the accuracy of our overall ensemble
model for the whole configuration space C.

For this purpose, we further partition the training set into
two sets: a build set for refining the template-based approxi-
mate models and a validation set for ranking them. Once the
models are built or refined based on the build set within an
iteration, we test their prediction accuracy using the validation
set.

In more detail, we use a standard machine learning tech-
nique, called k-fold cross validation, for our model training
and ranking process. The training sample set is partitioned
into k subsets. Of these subsets, a single subset is taken as
the validation set, and the remaining k−1 subsets are used as
the build set. The cross-validation process is repeated k times,

Algorithm 1 Iterative algorithm to build an ensemble of
models for a configuration space C.

1: Initialization:
2: Select a collection of performance model templates M
3: Divide configuration space evenly into l regions
4: Select v samples to construct test sample set Sv .
5: Training set St = ∅, m = size(M)
6: Iterative Training:
7: repeat
8: /* Expand the training sample set */
9: Add t new samples to the training sample set St.

10: /* Build ensemble of models */
11: Partition the training set St into k subsets.
12: for i = 1 to k do
13: 1) Use ith subset as validation set S ′v
14: 2) Use other k − 1 subsets as training set S ′t
15: for j = 1 to m do
16: 3) Train each base model Mj on S ′t
17: 4) Test Mj on S ′v
18: end for
19: end for
20: Derive rank per region from cross validation results
21: Build an ensemble from the rank
22: Test the ensemble of models on Sv
23: until stop conditions are satisfied

i.e., k folds, with each of k subsets of the training sample used
exactly once as the validation data.

Ensemble ranks the models per region, based on their
cross-validation results, and keeps the ranking results into a
region table. The best ranked model in each region is selected
to predict the performance for this region. Finally, in each
iteration, we test our ensemble of models on a testing set, and
compute its average relative error rate. If the test results satisfy
the stop conditions, Ensemble is ready to be used for prediction
on C; otherwise, the iterative training process continues. The
stop conditions can be defined as an error rate threshold, a
training time limit, or their combination.

IV. MODELING RESULTS

A. Testbed:

We use two industry-standard benchmarks (TPC-W, TPC-C)
to present our experience and evaluate Ensemble. TPC-W [11]
is a transactional web benchmark designed for evaluating e-
commerce systems. We use the browsing workload, and scale
up the workload; specifically, we created TPC-W2 and TPC-
W10 by running 2 and 10 TPC-W instances, respectively, in
parallel, creating a database of 8 GB and 40 GB, respectively.
TPC-C [12] simulates a wholesale parts supplier that operates
using a number of warehouse and sales districts. We use 128
warehouses, which gives a database of 32GB.

Our server platform is shown in Fig. 3. It consists of a
database server running modified MySQL code and a virtual
storage prototype, called Akash. We modify the MySQL/Inn-
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Fig. 3. Our server platform. It consists of a modified MySQL database server
(shown in left) and a virtual storage prototype Akash (shown in right).

oDB to have a quanta based scheduler for CPU usage allo-
cation, and modify its buffer pool implementation to support
dynamic partitioning and resizing for each workload partition.
The database server connects to Akash through the network,
using Network Block Device (NBD) to mount a virtual volume
as a NBD device (e.g., /dev/nbd1) which is used by MySQL
as a raw disk partition, (e.g., /dev/raw/raw1).

Akash contains a storage cache which supports dynamic
partitioning, and has a quanta based scheduler, which allocates
the disk bandwidth to different workloads among several
virtual volumes. We configure Akash to use 16KB block
size to match the MySQL/InnoDB block size. The quanta-
based scheduler partitions the bandwidth by allocating the
resource in time quantums; within each quantum only one
of the workloads obtains exclusive access to the underlying
storage. Our platform thus provides strong isolation between
workloads, hence we are able to measure the performance
impact of resource allocations for every workload through
dynamically setting its resource quanta. Using this platform,
multiple applications can be hosted on the same database
server, and share the underlying storage.

B. Building Models for Predicting Query Latency

In this section, we show how Ensemble refines preliminary
models given as model templates and builds an ensemble of
models with high accuracy for predicting the query latency of
TPC-W2, TPC-W10 and TPC-C, running on various configura-
tions of our server platform. Ensemble validates and builds the
ensemble of the following model templates. For modelling the
query latency of TPC-W2, we use just the basic Disk-bound (A-
Disk) and CPU-bound (A-CPU) analytical model templates.

For modeling the other workloads, we replace the basic
analytical model templates above with the equivalent, but more
generic G-INV and we add all other model templates to the
model knowledge base for Ensemble to fit, specifically: A-
STOR-Q, G-RGN, B-SVM, and B-CNST.

1) Predicting TPC-W2 Query Latency : We model the
query latency for the TPC-W2 workload within a region of
the configuration space as follows: a range of DBMS buffer
pools from 128M to 1024M, and a range of disk bandwidth
quantas from 32ms to 256ms. The storage server does not
have a storage cache in this experiment. The training time of
exhaustive sampling is 30 hours for 120 configurations. This

configuration space has three operating regions for TPC-W2:
(i) a CPU-intensive mode where the workload mostly fits in
the buffer pool, (ii) an I/O-intensive mode, and (iii) a mixed
mode influenced by both the allocation of the DBMS buffer
pool and the disk bandwidth fraction.

We provide two partial analytical models (A-DISK and A-
CPU) as our partial models without specifying/limiting the
context for either of them within the configuration space
above.

Fig. 4 presents our results. On the x-axis, we show the
training time and on the y-axis we show the average relative
error between the prediction and the measured performance for
the testing set. The figure shows that each analytical model,
on its own, performs well in its operating region, but poorly
overall, thus resulting in high errors of 51% and 53%, for
the A-CPU and A-DISK models, respectively. The analytical
models cannot improve with more training samples (leading
to the straight error lines in Fig. 4). On the other hand, the
ensemble model performs better than both and improves with
more training time. Specifically, Fig. 4 shows that after the 1
hour of training, the average error rate is about 30%, 20% after
2 hours, and 10% after 5 hours, at which time the ensemble
model converges to the required accuracy. The benefit of the
ensemble approach is that, by using performance samples,
we can rank the two partial models for each region of the
configuration space, and use the best to make the performance
prediction. Furthermore, this experiment shows that, by lever-
aging just these two simple models as guidelines, the ensemble
model can make accurate performance predictions even for the
mixed mode area, thus substantially reducing the total training
time compared to exhaustive sampling (from 30 to 5 hours of
training).
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Fig. 4. Model TPC-W2 workload. Ensemble leverages two simple, partial
analytical models A-DISK and A-CPU for modeling the TPC-W2 query
latency. Error rates drop to 10% after 5 hours.

2) Predicting TPC-W10 Query Latency : We vary the size of
the DBMS buffer pool from 128M to 960M with 15 settings,
the storage cache size from 128M to 896M with 8 settings,
and the disk bandwidth quanta from 32ms to 256ms with 8
settings. The training time of exhaustive sampling is about 10
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Fig. 5. Performance prediction of query latency for TPC-W10 workload. Ensemble mainly matches the prediction of B-SVM model, and later incorporates
the better predictions of G-INV model.

days for 960 configurations. The size of the testing set is 10%
of the original set size. The number of regions used on each
resource dimension is 4, hence the whole configuration space
is divided into 64 regions.

Fig. 5 presents the results. The black-box B-SVM model
performs well for this dataset. After about 10 hours of training,
the average relative error quickly drops to about 15%. G-INV
needs a longer training time (about 30 hours) to start predicting
well. Ensemble mainly matches the prediction of the B-SVM
model, and later it incorporates some better predictions from
G-INV. On the other hand, the analytical model, A-STOR-Q,
performs worse than B-SVM, with a high average error rate of
43%. The composition of Ensemble is shown in Fig. 5(c). The
B-SVM model contributes most to Ensemble as it is ranked
as the best model in more than 40/64 regions all the time. The
G-INV model achieves slightly higher accuracy than B-SVM
model after gathering sufficient training samples; as a result, it
is ranked as the best model with more than 10 regions after 35
hours. The contribution of the analytical model, A-STOR-Q,
to Ensemble is small, due to this model’s inaccuracy. We can
see the analytical model needs to be further improved in the
modeling process of query latency.

Predicting TPC-C Query Latency : We vary the size of the
DBMS buffer pool from 128M to 960M with 15 settings,
the storage cache size from 128M to 896M with 10 settings,
and the disk bandwidth quanta from 32ms to 256ms with 8
settings. The training time of exhaustive sampling is about 13
days for 1200 configurations. The size of the testing set is
10% of the original set size. The number of regions used on
each resource dimension is 4, hence the whole configuration
space is divided into 64 regions

Fig. 6 shows the results. The black-box model B-SVM
performs well initially, hence Ensemble matches its perfor-
mance. After about 20 hours, Ensemble gradually outperforms
B-SVM, with lower error rates. This is due to the fact that
the G-RGN gray-box model starts to offer better predictions
in many regions, and contributes more to Ensemble. From
Fig. 6(c), the composition of Ensemble shows that it mostly
selects the B-SVM model or the G-RGN model as the best

ranked model per region for predictions. Through effectively
combining the merits of both models, Ensemble outperforms
each individual one. On the other hand, the more sophisticated
analytical model, A-STOR-Q, does not perform well with a
high average error rate of 77%, and is not selected into the
composition of Ensemble. A secondary, but important point is
that, from the Figures presenting our results for TPC-W10 and
TPC-C, we can see that no individual model always wins all
the time; hence it is crucial to dynamically validate and rank
the models.

V. RELATED WORK

Existing techniques for predicting performance range from
analytical models [13], [14], [8], [15], to black-box models
based on machine learning algorithms [4], [16], [17]. There
are also previous gray-box models in related studies [18].
Furthermore, Zhang et al. use a regression-based analytical
model for capacity planning of multi-tier applications [19].
Compared to these existing systems, Ensemble seamlessly
combines analytical performance models that have been de-
rived for specialized systems with generic types of models.

Building complete analytical models requires an in-depth
understanding of the underlying system, however, which may
not always be possible in multi-tier server systems. As an
example of advanced analytical models for specialized cases:
Uysal et al. derive an analytical throughput model for modern
disk arrays [15] and queuing models [13], [8] have been ex-
plored for CPU-bound web servers. Soror et al. [14] use query
optimizer cost estimates to determine the initial allocation of
CPU resources to virtual machines and to detect changes in
the characteristics of the workloads.

With the complexity of modern systems, machine-learning
based approaches have been explored to model these systems.
These previous works either target providing a best model for
some specific type of system or workload, or provide fully
automated modeling/sampling methods. For example, Wang
et al. use a machine learning model, CART, to predict perfor-
mance for storage device [16]. Ganapathi et al. predict DBMS
performance by using a machine learning algorithm [4] called
KCCA. Zhang et al. [17] discuss how to use ensemble of a
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Fig. 6. Performance prediction of query latency for TPC-C workload. Ensemble initially matches the prediction of B-SVM model, and soon incorporates
the better predictions of G-RGN model.

group of probability models for automated diagnosis of system
performance problems. IRONModel uses a hybrid decision-
tree based machine learning model, called Z-CART, to predict
the parameters for analytical models designed for their storage
system [18]. iTuned [3] proposes an adaptive sampling method
which automatically selects experimental samples guided by
utility functions. While our approach has some similarities
with these approaches, our Ensemble automatically leverages
different types of models, each of which may work well in a
different operating mode, to provide a hybrid model that can
make accurate performance predictions in all regions.

VI. CONCLUSION

We design, implement and deploy Ensemble, a novel run-
time system for incremental, on-the-fly performance modeling
of datacenter applications. Ensemble validates model tem-
plates using monitoring data for the resources the model is
sensitive to. In this way, Ensemble incrementally constructs
an ensemble of models for the purposes of capacity planning,
performance inquiry or resource allocation.

Through a set of preliminary studies, we show that En-
semble can successfully validate, extend and reuse existing
simple models in order to approximate an end-to-end 5D query
latency model. Furthermore, we show that a model for query-
latency as a function of resource allocation can be built with
around 40 hours of training, with an inaccuracy below 15% in
a nearly black-box way, without any knowledge of query plans,
database statistics, or details of the hardware environment.
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