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Abstract
One of the key goals in the data center today is provid-
ing storage services with service-level objectives (SLOs) for
performance metrics such as latency and throughput. Meet-
ing such SLOs is challenging due to the dynamism observed
in these environments. In this position paper, we propose
dynamic instantiation of virtual appliances, that is, virtual
machines with storage functionality, as a mechanism to meet
storage SLOs efficiently.

In order for dynamic instantiation to be realistic for rapidly-
changing environments, it should be automated. Therefore,
an important goal of this paper is to show that such au-
tomation is feasible. We do so through a caching case study.
Specifically, we build the automation framework for dynam-
ically instantiating virtual caching appliances. This frame-
work identifies sets of interfering workloads that can bene-
fit from caching, determines the cache-size requirements of
workloads, non-disruptively migrates the application to use
the cache, and warms the cache to quickly return to accept-
able service levels. We show through an experiment that this
approach addresses SLO violations while using resources ef-
ficiently.

1. INTRODUCTION
Cloud environments are highly dynamic: workload re-

quirements change significantly over time [8, 11, 25], and
workloads (often in the form of virtual machines) are cre-
ated and removed at a fast rate [6]. This dynamism greatly
impacts the goal of providing service-level objectives (SLOs)
such average latency or target bandwidth for access to stor-
age. Administrators either provision storage resources for
the peak workload and waste resources, or they provision
aggressively and are unable to act quickly enough to handle
workload changes.

Various techniques [3, 12, 13, 14, 17, 33] have been pro-
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posed for handling scenarios where SLOs are violated due
to workload dynamism. These techniques primarily use re-
sources on storage systems to handle SLO violations [12,
33], limiting their applicability. Further, they either pro-
vide very temporary relief at the expense of lower priority
workloads [13, 33] or they require a long time to become
effective [3, 12, 17].

We develop a new SLO violation-handling technique that
addresses the limitations of current mechanisms. We pro-
pose that virtual appliances, that is, storage functionality
in virtual machines, be created dynamically to handle vi-
olations appropriately. A variety of storage-related virtual
appliances can be created dynamically. Examples include
the creation of a workload-characterization appliance when
a workload is under consideration for migration (or other
changes), and the creation of a compression appliance when
the storage system is about to run out of space. These ac-
tivities are high-overhead and temporary, and allocating re-
sources permanently may be expensive. Many virtual appli-
ances are available commercially, including, NetAppR© Data
ONTAPR© Edge [24], Amazon ElastiCache [2], and VMware
vSphereR© Storage Appliance [32].

In order to illustrate dynamic instantiation of virtual ap-
pliances, we consider a case study that uses virtual caching
appliances (VCAs) to absorb I/O load during workload peaks.
The approach provides a violation-handling mechanism for
peaks that occur up to a few times a day and last a few
hours, which is a common occurrence [11]. This approach
helps storage systems meet SLOs by using compute-server
resources in addition to storage-system resources.

We have built an automation framework called Dyna-
mite for dynamic instantiation of VCAs. In particular, we
use FlexCacheR© [23] technology based on Data ONTAP
Edge [24] as the VCA. Dynamite performs a series of steps
to enable the automation, including detection of interference
between workloads, estimating the cache-size requirements
of each workload, creating the VCA and re-routing appli-
cation traffic, and warming up the cache to restore SLO
conformance quickly. We conduct an experiment with in-
terfering workloads to show that our Dynamite prototype
dynamically instantiates a VCA to handle an SLO violation
quickly.

The rest of the paper is structured as follows. We present
detailed motivation for our work in Section 2 and discuss
related work in Section 3. We describe dynamic instantia-
tion in Section 4. We then detail the Dynamite workflow in
Section 5. Finally, we present our prototype in Section 6,
our evaluation in Section 7, and conclusions in Section 8.



2. MOTIVATION
We provide a background on the three trends in data

centers today – dynamism, sharing, and scale – and de-
scribe why an automated approach is needed to address
these trends.

2.1 Dynamism
There are two sources of workload dynamism in data cen-

ters. The first source is the change in a workload’s require-
ments over time [8, 11, 25]. Specifically, peak workload re-
quirements can be much higher than the average require-
ments. Figure 1 shows the variation in IOPS (measured
hourly) over time for two workloads from a set of traces
from MSR Cambridge [22]. The peak IOPS is 6 times the
average IOPS for the first trace (USR-1) and is 15.5 times
the average IOPS for the second trace (SRC1-1). In fact, in
more than 20 of the 36 traces from MSR [22] that we have
examined, the peak is at least 10 times the average. We
also note that in SRC1-1, the occurrence of peaks is peri-
odic in nature (first hour of each day). The second source
of dynamism in the data center is addition and removal of
workloads over time, contributing to the changes in overall
workload observed by storage systems. Such dynamism is
especially true for cloud service providers, where many vir-
tual machines are created or destroyed at a fast rate (e.g.,
EC2 instances [6, 7]).

Dynamism causes one of two problems: administrators
either provision resources for the peak workload thereby
wasting resources, or they provision aggressively and are
unable to act quickly enough to handle changes in require-
ments, thereby violating SLOs. In order to enable aggres-
sive provisioning and efficient resource utilization, we need
techniques to quickly mitigate SLO violations. Current mit-
igation techniques are either temporary fixes (e.g., throt-
tling workloads [10, 18, 13, 35]) or operate over very large
timescales (e.g., data migration [1, 3, 4]). As shown in Fig-
ure 1 and discussed elsewhere [11], workloads may experi-
ence peaks a few times a day. Thus, techniques that become
effective in less than an hour are particularly useful.

2.2 Sharing
Multiple applications now share storage resources. While

this approach increases resource utilization, sharing implies
that the performance of one workload can be affected by
the activities of another with which it shares storage re-
sources. Administrators often have little visibility into ex-
actly how resources are shared and what workloads inter-
fere, thereby forcing more conservative provisioning prac-
tices. Even so, errors in performance modeling (both hu-
man and automated) for multiple workloads can cause SLO
violations that are hard to diagnose or handle.

2.3 Scale
Another obvious trend is the large scale of operations in

the cloud. While the large scale is a core element in the
business model for the cloud, managing workloads at scale
is particularly hard. Human intervention in handling ev-
ery SLO violation (or resource crunch) is prohibitively ex-
pensive if not impossible. Therefore, automation of man-
agement activities is essential; the research on management
using service-level objectives [1, 14, 13, 21, 36] is particu-
larly relevant and we leverage (and assume the availability
of) such techniques in this work. We expect that an applica-
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Figure 1: Workload Dynamism: The figures show
the IOPS (measured hourly) issued by the MSR Cambridge
traces USR-1 and SRC1-1. The traces start at the 17-hour
mark. The grid lines represent the last hour of each day.
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Figure 2: Mitigating SLO Violations: We show the
timescale (a few seconds to many months) and location
(client-side vs. storage-side) at which techniques for miti-
gating SLO violations operate.

tion’s SLO for performance is specified in storage terms such
as access latency or IOPS, or can be translated to storage
terms.

3. RELATED WORK
We discuss related work from the viewpoint of SLO-based

management for storage systems, cache sizing [16, 20, 30,
33, 34, 37] and cache warmup [15].
SLO-based Management: A variety of research efforts
have contributed greatly to the field of SLO-based manage-
ment, especially for storage systems. These efforts have cre-
ated a workflow for automated management, including tech-
niques for monitoring [29], analysis [1], planning [1, 3], and
execution of various mitigation techniques [12, 13, 14, 33,
34]. Figure 2 shows a wide range of SLO-violation correc-
tion techniques. The figure classifies the various techniques
based on: (1) the amount of time it takes to initiate and
complete a particular mitigation technique, and (2) location
(client/storage) where the actions are performed.

We now briefly describe work on each of the techniques.
Workload-throttling controls the entry of I/O requests based
on the workload’s priority or its share of resources [13, 33].
These techniques handle violations for a short period and
longer-term solutions are required for persistent violations.
Ballooning techniques have been proposed for VMs to dy-
namically acquire more memory resources [34]. Such tech-
niques are effective as long as the requirements of the VM
can be satisfied using the resources on the same physical
machine. Schemes to partition available caches based on re-
quirements have been examined [33]; Dynamic load-balancing



across storage nodes [14, 17], or between flash and disk
tiers [12] have also been proposed to mitigate SLO viola-
tions. Mechanisms that allow for adding more capacity by
monitoring a system, and subsequently proposing a new con-
figuration have also been proposed [1, 3, 4]; Finally, in terms
of dynamic instantiation, a variety of automated scaling ap-
proaches have been suggested both for computation [25] and
for distributed storage nodes [17].
Cache Sizing and Warmup: Methods to determine the
cacheability of workloads include using new hardware [28,
37], to using OS memory management features [34, 37], to
running trace-based simulations [16], and to working-set es-
timations [30, 34]. The focus on cache warmup has primarily
been from a benchmarking perspective, where techniques for
accelerating simulations by reducing warmup periods have
been explored [15].

Our automation framework (Dynamite) is the complete
management workflow needed for dynamic instantiation of
VCAs. Our approach is complementary to the above tech-
niques. It operates on a timescale of a few hours to days,
to a limited extent similar to that of ballooning [34], cache
partitioning [33], and dynamic tiering [12]. Our technique
differs from these approaches primarily in acquiring non-
local resources, and in efficiently and accurately estimating
resource needs.

4. DYNAMISM AS AN OPPORTUNITY
We propose that functionality in the form of virtual ma-

chines be dynamically inserted into the storage stack when
needed. We refer to such functionality as virtual appliances.
We acquire or discard virtualized compute resources based
on demand, thereby reducing resource overprovisioning.

While the dynamic-instantiation approach implies “shift-
ing” of resource requirements (and hence the hardware pur-
chased) from storage systems to compute servers, such a
shift can be particularly beneficial. Resources on compute
servers are typically cheaper than those on storage systems
due to commoditization. Further, resources on compute
servers can be used flexibly; e.g., DRAM on compute servers
can be used for compute needs of applications as well as for
caching needs of the storage stack. A number of storage-
related virtual appliances can be created dynamically. One
can create a workload-characterization appliance interposed
between the client and storage server when a workload is
under consideration for migration (or other changes). One
can also create a compression/deduplication appliance that
can be inserted when the storage system is about to run of
capacity. These activities are high-overhead and temporary,
and allocating resources permanently may be expensive.

In this paper, we explore the creation of a virtual caching
appliance (VCA) on demand for handling workload peaks
when storage resources are provisioned for the average work-
load. Figure 3 shows a scenario where a VCA is dynamically
instantiated to handle an SLO violation. It shows two com-
pute servers containing three VMs (VM1, VM2, VM3) using
a network-attached storage server; VM1 and VM2 share a
set of disks while VM3 uses a different set. Let us assume
that due to a change in workload, VM2 is not meeting its
average latency SLO. We can create a VCA for VM1 (which
interferes with VM2) and reduce the load on the storage
system, thereby enabling VM2 to meet its SLO.

Most of the mechanisms for delivering storage or caching
functionality in the form of virtual appliances have already
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Figure 3: Dynamism: SLO violations can be handled by
dynamically creating VCAs to offload read IOs from the stor-
age system.

been developed [2, 32]. The ability to instantiate them on
demand (e.g., Amazon ElastiCache [2]) has been developed
as well. Therefore, our focus is on techniques needed to
address policy questions; examples include which workload
should be cached, how much cache space to allocate (cache
sizing), and what data should be used to warm up the cache
(cache warmup). Currently, activities related to policy ques-
tions are performed manually (e.g., manual cache sizing [2]).
Human intervention in answering policy questions or in dy-
namically instantiating VCAs is near-impossible due to the
rapid changes in workload characteristics, the high degree
of resource sharing across workloads, and the large scale of
data-center operations. Our Dynamite workflow aims to au-
tomate such policy decisions.

5. DYNAMITE WORKFLOW
We describe the Dynamite workflow for dynamically in-

stantiating VCAs to meet performance SLOs. Figure 4 shows
the Dynamite workflow. We organize the steps taken by Dy-
namite into three phases: monitoring, analysis and planning,
and execution. We explain each of these phases in detail be-
low, using the scenario in Figure 3 as an example. We also
highlight each numbered step shown in Figure 4 in bold.

5.1 Monitoring
Dynamite utilizes the performance and traffic metrics of

each workload running on the storage system including I/Os
per second, average latency, request sizes, and operation
mix. In addition, Dynamite tracks characteristics such as
working-set sizes over time and most-frequently-used zones
of data. These two metrics are very useful for answering
policy questions.

(Step 1) SLO Violation Detection: The performance
metrics are used to detect situations when a workload is not
meeting its SLO. Figure 3 shows that VM2 is in violation;
this detection triggers the rest of the Dynamite workflow to
correct the problem.
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Figure 4: Dynamite Workflow: We organize the steps taken by Dynamite into three phases: monitoring, analysis and
planning, and execution. The monitoring phase continually tracks workload characteristics and an application’s compliance
with respect to its SLOs. Upon detection of a SLO violation, the analysis and planning phase looks at interfering workloads,
selects a workload to cache, and sizes the cache appropriately. Once the solution is determined, a new cache is instantiated
and the workload is re-routed to use the cache.

5.2 Analysis and Planning
Upon the detection of an SLO violation, Dynamite identi-

fies interfering workloads, finds cacheable workloads, builds
a list of caching solutions, chooses the best solution, and
finds a compute server to instantiate the VCA.

(Step 2) Workload Interference Detection: Dynamite
identifies a set of interfering workloads, i.e., workloads that
compete for the same resources as the affected workload
(workload experiencing an SLO violation), on the storage
system. The insight is that offloading the affected workload
or any of the interfering workloads would reduce resource
contention; by identifying interfering workloads, Dynamite
has more options for workloads to offload than just the af-
fected workload or any peaking workload. In Figure 3, VM1,
VM2, and VM3 could all interfere with each other. VM2

and VM3 could interfere if there is a memory or network
bottleneck; and VM1 and VM2 could interfere due to a disk
bottleneck as well. Dynamite uses statistical correlation be-

tween changes in performance metrics of different workloads
to determine whether they are interfering1. In our example,
let us assume VM1 and VM2 are identified as interfering.

(Step 3) Cacheability Checking: Next, Dynamite iden-
tifies the subset of cacheable workloads, that is, workloads
that can be offloaded using a cache. First, Dynamite filters
workloads based on a set of simple rules; e.g., if the VCA
is a write-through cache, workloads with a high fraction of
writes cannot be offloaded. The rules can be specified by the
VCA vendor as a best-practice. In Figure 3, let us assume
that VM2 has been removed from further consideration as
it fails one of the conditions of cacheability checking.

(Steps 4, 5) Cache Sizing and Solution Selection: For
the cacheable workloads, Dynamite sizes the VCAs appro-
priately such that a sufficient fraction of I/Os are offloaded

1Alternately, Dynamite can leverage “white-box” knowledge
that workloads share disk drives to detect interference can-
didates.



to the VCA to correct the SLO violation. In particular, Dy-
namite uses an online cache-sizing tool that uses working-
set size estimates gathered by the storage system to build
a miss-ratio curve (the details of this technique are beyond
the scope of this paper). The miss-ratio curve indicates the
fraction of I/Os sent to the underlying storage system for
various cache sizes. In our example, Dynamite may deter-
mine that VM1 will have a miss ratio of 50% for a 4GB
cache, 25% for an 8GB cache, and 20% for a 16GB cache.
Next, Dynamite uses a simple performance model to ana-
lyze the impact of the cache-miss workload on the storage
system and interfering workloads; more advanced impact-
analysis techniques [1] can be used if available. Based on the
analysis, Dynamite generates a list of (workload, cache-size)
solutions that can fix the SLO violation; in the example, it
may pick an 8GB cache for VM1 to offload 75% of the I/Os.
This list of solutions is ranked by the amount of resources
required for different workloads and the solution with the
least resource cost is selected. Additional heuristics such as
a preference for non-peaking workloads or workloads with
stable working sets may also be used to rank solutions.

(Step 6) Host Selection: The location of each applica-
tion VM is provided to Dynamite at workload creation time.
Dynamite selects the compute server for the VCA using
location-based affinity; that is, Dynamite selects the applica-
tion VM’s compute server as long as sufficient resources are
available. This approach, and extensions to compute servers
on the same rack [8], enables the VCA to be more frugal in
using network bandwidth. When sufficient resources are not
available locally, Dynamite uses the first server in its search
that has sufficient resources. Thus, in Figure 3, the VCA
is created on the same compute server as VM1. One may
leave host selection to hypervisor-management tools as long
as inter-VM affinity can be specified.

5.3 Execution
The execution steps instantiate and warm up the cache.

(Steps 7, 8) Cache Instantiation and Re-routing:
Dynamite invokes hypervisor APIs to create and configure
the VCA. Once the VCA has started, the workload to the
storage system is re-routed to use the VCA instead. Ta-
ble 1 presents a variety of non-disruptive options for such
re-routing. These options are also non-invasive from the ap-
plication viewpoint (i.e., no change to the client). Of these
options, we use IP-address migration for Dynamite. We first
enable dynamic re-routing by allocating a new IP address for
data access from the storage system at application VM cre-
ation time. Dynamic re-routing is performed by migrating
this IP address to the VCA. Thus, the approach treats IP
addresses as an additional resource that may be consumed
to enable re-routing.

(Step 9) Cache Warmup: A cache is not effective un-
less it is warm. The simplest approach is to allow the cache
to be warmed by application access but it may not restore
the system to SLO-conformance quickly enough. Therefore,
Dynamite performs explicit cache warmup. Explicit cache
warmup may generate more load on a heavily-loaded stor-
age system, potentially causing more SLO violations. At the
same time, it may allow violations to be of shorter duration
than without warmup; further, warmup may be particularly
useful when VCA instantiation is performed proactively be-
fore violations occur. Dynamite monitors the working set
at a large granularity (called zones) and reads entire zones

sequentially. In particular, Dynamite monitors only the
heavily-accessed zones (more than 0.1% of accesses) using
the lossy-counting algorithm [19].

Cache Removal: The workloads, storage system, and VCA
continue to be monitored once the VCA is created. The
cache can be removed when: (1) the workload reaches a sus-
tained low-load phase, (2) the resource utilization levels on
the storage system drop, or (3) the workload changes so that
the cache becomes ineffective. Thus, resources are returned
to the compute pool when they are no longer needed. Ap-
plication traffic is also re-routed back to the storage system
prior to cache removal. Given that the decision-making pro-
cess for removal uses the components of the workflow above,
we do not focus on cache removal in the rest of the paper.

6. DYNAMITE PROTOTYPE
Our implementation of Dynamite is split between a man-

agement server and a trace-replay tool. The management
server collects configuration information and periodic (every
10s) metrics from the storage system and compute servers
using the appropriate APIs. This configuration informa-
tion includes the available CPUs, DRAM, and storage space.
The metrics collected include IOPS, the average latencies of
I/Os, and the bytes transferred over the network interfaces.
The storage-system metrics are used to detect SLO viola-
tions and interference between workloads while the compute-
server metrics are used to determine available capacity for
the VCA. Upon the detection of an SLO violation, the rest
of the Dynamite workflow is triggered. For ease of imple-
mentation, we use a vanilla storage system and implement
the working-set estimation and tracking of heavily accessed
zones within the tool used to replay our traces; given their
low overhead, we expect these monitoring features to be im-
plemented in future storage systems.

VCA: The Dynamite prototype uses NetApp FlexCache [23]
technology packaged as a virtual machine as the VCA. Flex-
Cache supports the Network File System (NFS) Version 3
protocol [9] for client data access. The absence of server
state (sessions, etc.) in NFSv3 allows non-disruptive traffic
re-routing through IP-address migration. Even so, Dyna-
mite configures the VCA to ensure that NFS file handles are
generated with the same inputs and processed in an identi-
cal fashion to the storage server. This configuration ensures
that operations to open files are processed correctly.

FlexCache uses a proprietary protocol to perform reads
and writes to the origin storage system. It forwards all writes
to the storage system and invalidates the data blocks that
are written to. The protocol also provides cache coherence
enabling multiple FlexCache instances to be instantiated for
the same data. FlexCache uses both memory and disk (or
SSDs) to perform caching; the data in memory is a subset
of the data on disk. Dynamite configures the VCA with
four virtual CPUs, the amount of memory determined by
cache sizing, and selects local drives for storing its virtual
disks. In our experiments, we use SSDs available on compute
servers. FlexCache supports a read command that causes no
data transfer to the client, but causes the data to be read
internally from the backend storage system. Dynamite uses
this command for warming the cache.

While we have used the FlexCache VCA for our prototype,
we believe that Dynamite can be readily applied to other
VCAs (such as Amazon ElastiCache [2]).



Technique Description Protocol Constraint

IP-address migration Use unique IP addresses for storage access for each workload; Move
address to VCA NFSv3 IP addresses

pNFS layout revoke [26]
pNFS allows storage metadata servers to revoke data layouts and
trigger the client to re-fetch the layout, at which time the server can
direct the client to the VCA.

NFSv4.1 None

Null Copy-offload
Trigger storage migration [31] to the VCA. Hypervisor offloads the copy
(e.g., SCSI Extended Copy [27]) to the storage, which does nothing and
returns success.

SCSI/
NFS

Hypervisor
dependent

Permanent proxy
All applications access storage through a proxy that can perform load-
balancing, cache routing, etc. (inefficient use of resources since it is
“always-on”)

Proxy
dependent

Resources
used by
proxy

Table 1: Traffic Rerouting: Set of options for rerouting application traffic non-disruptively, where disruption is defined as
a long (many minutes) stoppage of the application. We use IP-address migration for Dynamite.

7. EVALUATION
We present a case study showing how a VCA can be in-

stantiated to offload IOs from the storage system. We fo-
cus on showing the benefit of the Dynamite workflow, high-
lighting the interference detection, cache sizing, and cache
warmup aspects. Other parts of the Dynamite workflow are
not discussed in detail.

We consider two usage scenarios: reactive deployment and
proactive deployment. With reactive deployment, the Dy-
namite workflow starts only when an SLO violation is de-
tected. Therefore, Dynamite uses recent data on working-set
sizes, heavily-accessed zones, etc. for decision making. With
a proactive deployment, Dynamite operates in an environ-
ment with prior knowledge of workload peaks [11]) and the
workload characteristics during peaks. Therefore, Dynamite
creates the VCA well before the workload peak actually oc-
curs. We additionally simulate this mode by having Dyna-
mite use working-set size and zones data generated through
the workflow for accesses during the workload peaks that
are about to occur (instead of using past data).

7.1 Experimental Setup
Table 2 shows the configuration for systems used in the

experiment. The monitoring server and the Dynamite work-
flow run on a separate management VM. The trace-replay
tool generates I/O requests to the storage system. The tool
issues all I/Os asynchronously; that is, it follows timestamps
for every I/O on the trace irrespective of whether previous
I/Os have been completed. The parallelism in I/Os is lim-
ited by the buffer size for outstanding I/Os in LinuxR© asyn-
chronous IO (libaio) – set to 16 I/Os in our setup.

We evaluate Dynamite by replaying the USR-1 trace from
a set of MSR traces [22] and a trace generated using the
micro-benchmark FIO [5] performing random reads. These
workloads share a 11-disk RAID-4 group. We set a simple
performance SLO in terms of IOPS where we require 1800
IOPS for USR-1 and 5000 IOPS for FIO; low-load situations
are not flagged as SLO violations. Using these SLOs, we pro-
vision the storage system to meet the average demands of
both applications but not the peak demands of both. Each
experiment consists of running an intense 2-hour segment
of the traces using our trace-replay tool; Even so, we re-
play USR-1 – one of the more intense MSR traces – at 10x
speed since the trace did not stress the storage system at
normal speed. Finally, the storage system has a (minor)
background workload for administrative tasks (SYS) run-
ning concurrently with the workloads.

W
 USR1
 FIO
 SYS
 Set#

USR1
 1
 1
 0
 1

FIO
 1
 1
 0
 1

SYS
 0
 0
 1
 2
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Figure 6: Workload Interference: We show (a) the in-
tereference table created by Dynamite when SLOs are vio-
lated and (b) the intereference measured by Dynamite be-
tween the workloads USR-1 and FIO. Note that higher inter-
ference is recorded when the workload SLOs are affected in
Figure 5.

7.2 Results
Figure 5 shows the performance of both workloads where

x-axis shows the time elapsed in the experiment and the
y-axis shows the IOPS observed by the trace-replay tool.
Reactive deployment is shown in Figure 5(a) and proactive
deployment is shown in Figure 5(b). The Alone and Co-
located lines are identical for both reactive and proactive.

We first run each workload alone. The workload USR-1
has four distinct phases: a short duration load spike (up to
the 7-minute mark), a calm period (between 7 and 48 min-
utes), a sustained peak load (between 48 and 75 minutes),
and a final calm period. FIO performs I/Os at a steady rate
of 5000 IOPS. The storage system is able to meet the 1800
IOPS and 5000 IOPS SLOs when the workloads are run in
isolation.

Next, we run USR-1 and FIO at the same time, depicted
as Co-located on the graphs. As the storage system is provi-
sioned for average load, the performance of FIO suffers dur-
ing phase 1 (the initial load spike) as well as phase 4 (the sus-
tained peak load); in these phases, the average IOPS for FIO
is only 3000 (approx.). Similarly, USR-1 does not meet its
SLO of 1800 IOPS and the backlog causes the peak section



Storage Server Compute Server App VMs
OS Data ONTAP VMwareR© ESXR© 4.1 Ubuntu 10.04

CPU 4 AMD Opteron 8 IntelR© XeonR© E5630 1 Logical
RAM 16GB 24GB 512MB

Storage 11 15k RPM FC Disks 3 Samsung MZ-5PA256 SSDs NFS datastore
Network 1Gbps 1Gbps 1Gbps

Table 2: Platform Details: Details of the hardware and software running on our storage and compute servers.
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Figure 5: Results: We run a case study with two workloads: USR-1 from MSR and a micro-benchmark FIO sharing a set of
disks on the storage system. The storage system is provisioned to meet the peak load of each workload running alone but not
together. We run Dynamite using proactive and reactive VCA instantiation. Our results show that Dynamite correctly sizes
the cache, and creates the VCA. Both proactive and reactive schemes address the SLO violation; the proactive, by creating the
VCA ahead of time, has no violations during the peak load.

of the trace to be completed roughly 5 minutes later than
it did when the workload was running in isolation. When
Dynamite is used in this scenario, the SLO violation is han-
dled efficiently. We now describe the results for each step of
Dynamite, discussing reactive deployment first.

Reactive Deployment: Reactive deployment is depicted
by lines Reactive and Reactive-W (reactive with warmup) on
the graph. Dynamite ignores the short-duration load spike;
these are better handled through techniques such as work-
load throttling (see Figure 2). Dynamite then detects the
occurrence of an SLO violation at the 48-minute mark and
performs the following main steps: interference detection,
cache sizing, cache instantiation, and cache warmup.

Figure 6(a) shows the interference table generated by Dy-

namite when the violation is detected. Dynamite detects
that workloads USR-1 and FIO are the interfering workloads,
and that SYS does not impact the other workloads. Since
workload-interference detection is performed constantly, we
show in Figure 6(b) the interference levels detected between
USR-1 and FIO over the entire experiment for the Co-located
case. We see that a higher level of interference is correctly
detected when USR-1 peaks.

Once Dynamite detects interfering workloads, it deter-
mines the cache requirements for the workloads. Figure 7
shows the simulated (using LRU simulator) and estimated
(mechanism not described) miss-ratio curves for both work-
loads. Since these curves apply to reactive deployment, they
are calculated using the WSS data collected up to the peak
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Figure 7: Miss-Ratio Curves: We show the miss-ratio
curves for each workload calculated up to when the peak of
USR-1 is reached (at the 48 minute mark; see Figure 5). It
shows that USR-1 is more cacheable (hence appropriate for
a VCA) than FIO.

of USR-1 (up to the 48-minute mark). Dynamite determines
that USR-1 requires less resources for caching and a cache
of 3 GB is needed to offload sufficient I/Os.

Dynamite creates a VCA with 4 GB of memory (some
allowance for the VCA’s memory requirements). We allo-
cate a large amount of SSD space (unrelated to miss ratio
curve) due to the limitations of the VCA version used; the
extra space does not impact performance since the working
set is small. Following location-affinity, Dynamite creates
the VCA on the same compute server as the VM running
USR-1 at 55-minute mark (after a sustained SLO violation
is experienced).

At this point, the scenarios with and without warmup
differ. Without warmup (Reactive), the cache becomes ef-
fective at the 65-minute mark, and absorbs most of the IOs
issued by USR-1, allowing the storage system to satisfy the
5000 IOPS SLO of FIO. The I/O offload results in USR-1
achieving roughly 3000 IOPS between 65 and 75 minutes of
the experiment. USR-1 performs better than expected be-
cause it is not limited by network bandwidth (due to the
collocation of application and VCA).

Cache warmup for the reactive scenario impacts perfor-
mance negatively (Reactive-W). In this particular trace seg-
ment, the working set of the prior period of accesses is differ-
ent from that of the peak workload, thereby causing warmup
to simply be an additional burden on the storage system;
despite the burden, it completes the peak workload earlier
than without a VCA. The negative impact of warmup in this
case shows that warmup of the peaking workload may not
be useful since the working set of the workload may change
significantly at such times. This result may be used to build
heuristics that can influence workload selection or warmup
decisions.

Proactive Deployment: Proactive deployment is depicted
by lines Proactive and Proactive-W (proactive with warmup)
on the graph. For proactive deployment, Dynamite uses pre-
dictions of workload peaks to create VCAs before SLO vi-
olations occur, potentially avoiding violations entirely. As

described earlier, we simulate availability of high-quality his-
torical data by using working-set size estimations and zones
for warmup for the peak-workload section.

We find that the WSS data for the proactive scenario
yields similar miss-ratio curves to the ones for the reactive
case. Dynamite creates a VCA with 4 GB of memory for
the proactive scenario at the 20-minute mark. The cache be-
comes effective earlier for the proactive scenario (Proactive
line) than for the reactive scenario. Further, warmup with
reliable data on heavily-accessed zones is extremely useful
(Proactive-W line). With proactive creation and warmup,
Dynamite handles the USR-1 peak with no violations of the
SLOs of USR-1 and FIO.

7.3 Discussion
While our case study is limited to two main workloads and

instantiation of a single VCA, it shows that Dynamite can
be very useful for handling SLO violations. Dynamite, espe-
cially with proactive instantiation, may even allow the stor-
age stack to avoid SLO violations using compute resources.
Further, the ability of Dynamite to handle SLO violations
allows the storage system to support two workloads instead
of one, thereby providing efficient utilization of resources.

8. CONCLUSION
Storage functionality is no longer confined to dedicated

storage servers. As more diverse virtual storage appliances
become available, using them similarly to their physical coun-
terparts is an opportunity lost. We can greatly enhance the
agility of the data center by using them in dynamic ways.

We use dynamic instantiation of virtual appliances for
handling SLO violations. This technique handles workload
peaks that occur every few hours or days, a phenomenon
that has so far not been addressed adequately. We conduct a
caching case study to illustrate dynamic instantiation. To do
so, we build Dynamite, a framework that automates cache
instantiation. Some of the techniques we have developed for
caches may be applicable for dynamic instantiation of other
storage appliances as well.
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